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FOREWORD

If there be any lingering doubts as to the wisdom of doing deeply funda-
mental research in an industrial laboratory, this book should dissipate
them. Dr. Shockley’s purpose has been to set down an account of the
current understanding of semiconductors, an understanding which inci-
dentally is comprised in no mean degree of his own personal contributions.
But he has done more than this. He has furnished us with a documented
object lesson. For in its scope and detail this work is obviously a product
of the power and resourcefulness of the collaborative industrial group of
talented physicists, chemists, meta'lurgists and engineers with whom he is
associated. And it is an almost trite example of how research directed at
basic understanding of materials and their behavior, “pure” research if
you will, sooner or later brings to the view of inventive minds engaged
therein opportunities for producing valuable practical devices.

The program of work which Dr. Shockley leads was aimed at under-
standing a kind of materials, the semiconductors, which had already
received considerable application in the communications business in the
form of rectifiers, regulators and modulators. Not only were improvements
in such devices hoped for but the possibility of creating an amplifier was
envisioned. In the course of three years of intensive effort the amplifier
has been realized by the invention of the device named the transistor.

It would be unfair to imply that any and every fundamental research
program may be expected to yield commercially valuable results in so short
a time as has this work in the telephone laboratories. To achieve such
results, careful choice of a ripe and promising field is prudent and a clear
recognition of objectives certainly helps; but there should be no illusions
about the necessity of a large measure of good luck.

Solid state electronics, or transistor electronics as Dr. Shockley calls
it, preceded and in one respect has always excelled vacuum electronics.
This is true in communications engineering at least, for the crystal wireless
detector preceded the audion and it is still the best detector when the going
gets tough, as in microwaves. Nevertheless in the past forty years the
vacuum tube is the tool which has shaped the whole electrical intelligence
transmission art. It is an art traditionally based upon highly stable
amplifiers in which distortion is rigorously suppressed and upon modulators
in which distortion is precisely tailored to a useful purpose. Evidence is
already strong that transistor devices will be developed having character-
istics suitable for such exacting uses.

Vit



viii FOREWORD

The newer methods of transmission by quantizing and time splitting,
together with related fields such as electric computing, require large
numbers of low power amplifiers and gating and flip-flop-circuits to handle
pulses and stepwise current changes. Transistor devices are being found
to have unique advantages in this type of circuitry. They are tiny, fast and
efficient. Here the science of transistor electronics which Dr. Shockley
and his colleagues have so effectively launched promises to lead into new
areas of technology. The present volume should be a valuable guidebook.

Raven Bown, Director of Research
Bell Telephone Laboratories



PREFACE

The hole, or deficit produced by removing an electron from the valence-
bond structure of a crystal, is the chief reason for existence of this book.
Although the hole and its negative counterpart, the excess electron, have
been prominent in the theory of solids since the work of A. H. Wilson in
1931, the announcement of the transistor in 1948 has given holes and
electrons new technological significance. From the theoretical viewpoint,
the hole is an abstraction from a much more complex situation and the
achieving of this abstraction in a logical way appears inevitably to involve
rather detailed quantum-mechanical considerations. From the experi-
mental viewpoint, in contrast, the existence of holes and electrons as
positive and negative carriers of current can be inferred directly by the
experimental techniques of transistor electronics so that holes and electrons
have acquired an operational reality in Bridgman’s sense of the word.
Furthermore, the new experiments have established the quantitative
aspects of the behaviors of holes and electrons with sufficient accuracy
for many of the purposes of transistor electronics. Thus, in the level of
abstraction, there is a great difference between theory and experiment;
this difference is reflected in the organization of the book.

In Part I, only the simplest theoretical concepts are introduced and the
main empbhasis is laid upon interpretation in terms of experimental results.
This material is intended to be accessible to electrical engineers or under-
graduate physicists with no knowledge of quantum theory or wave me-
chanics. It should serve as a basis for understanding the operation of
transistor devices and for elementary design considerations.

Part III, at the other extreme, is intended to show how fundamental
quantum theory leads to the abstractions of holes and electrons. In order
to make the spirit, if not the details, of these mathematical investigations
accessible to readers without extensive training in theoretical physics, an
introductory discussion has been prepared. This material, presented in
Chapters 13 and 14, is intended to answer questions that frequently arise
about wave functions and their interpretation. Chapter 14 makes con-
siderable use of electrical engineering analogues and covers most of the
basic quantum-mechanical principles needed for the subsequent treatment
of holes and electrons. Part III also contains an introduction to statistical
mechanics and other topics applicable to the theory of electronic conduction
in crystals. '
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x PREFACE

Part II attempts to bridge the gap between Parts I and ITI by presenting
the reasoning and results of Part III in pictorial and descriptive terms.
The closing chapter of Part II reexpresses some of the theory in analytic
form useful for quantitative studies of transistor phenomena. This
chapter has also been used as a repository for some late developments in
transistor electronics.

Problems follow many of the chapters. Some of these are simply
numerical examples intended to give the reader a feeling for the orders of
magnitude involved, others are intended to supplement or extend the
mathematics in the text, and still others contain results which might well
be discussed at length in the text but which have been stated as problems
in the interests of brevity.

The endeavor to probe deeply into the logical consequences of the funda-
mental theory, to reduce these consequences to pictorial terms and to find
experimental counterparts to the theoretical concepts is in keeping with
the philosophy of research at Bell Telephone Laboratories. The invention
of the transistor occurred in connection with a research program based on
this philosophy and the development and content of this book reflect the
same philosophy. The modus operandi of research programs like that
associated with the invention of the transistor is to seek primarily for a
fundamental understanding of the phenomena being investigated while at
the same time remaining alert for possible applications.

I have frequently found it helpful in my own thinking to consider that
fundamental understanding for many solid state problems is achieved
when four questions can be answered:

(1) What are the atoms involved and how are they arranged?

(2) How did this arrangement come into being?

(3) How does this arrangement lead to certain mechanisms of electronic ,
and atomic motion?

(4) How do these mechanisms give rise to the observed properties?

In terms of these questions, the phenomena of conduction are understood
and so is carrier injection by p-z junctions. Many other phenomena dis-
cussed in this book are understood in so far as question (4) and part of
question (3) are concerned; a completion of the understanding of some of
these phenomena is currently a major research aim.

This book had its origin in a series of lectures given at Bell Telephone
Laboratories in connection with the growth of the transistor program. It
thus owes its existence basically to the invention of the transistor by
J. Bardeen and W. H. Brattain. Its content and organization have been
influenced by expositional needs discovered during the lectures. The
emphasis is accordingly on those materials and phenomena that are most



PREFACE xi

prominent in transistor electronics and numerous other semiconductors
and effects are omitted entirely.

The preparation of this book has required support in a variety of ways.
The encouragement and constructive criticism of R. Bown, J. A. Morton,
R. M. Ryder, W. G. Pfann, L. A. Meacham and J. J. Markham have been
of great value and have resulted in particular in the arrangement of Part I,
the existence of Chapter 14 and various improvements in Chapters 15 and
17. For other assistance, I am indebted in particular to R. D. Heidenreich
and also to J. Bardeen, G. C. Danielson, W. G. Dow, J. B. Johnson, C.
Kittel, K. G. McKay, P. H. Miller, Miss D. J. Oxman, F. Seitz, Mrs. G. V.
Smith, L. Tisza and many others. W. van Roosbroeck has commented
on nearly the entire manuscript, has carried out the calculations for many
of the figures in addition to undertaking responsibility for the index. The
figures themselves have benefited greatly from the efforts of Sidney Lund
and the late B. A. Clarke. The very tedious and difficult task of typing
the several drafts has been admirably handled by our transcription depart-
ment. The problem of organizing the work and keeping track of the
many details has been solved for me by Mrs. E. M. Sparks. The encourage-
ment and cooperation of Jean B. Shockley have been essential to the work.

October 21, 1950 WiLLiaAM SHOCKLEY
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LIST OF SYMBOLS

Most of the symbols used fall into four broad classes distinguished by
different type faces:

Lightfaced Italic. Ordinary magnitudes, components of vectors, con-
stants of various sorts: a, B, ¥, Ez, Pa, Dy Tps Bp-

Boldfaced Italic. Vectors: E, H, R, P, p.

Boldfaced Roman. Quantities whose functional dependence on other
quantities is to be emphasized such as wave functions vy, ®, A, a, B and the
Fermi-Dirac function f.

Script. Quantities and operators on an electronic scale such as J( the
Hamiltonian operator, & for energy, R and & for operators. Also the
thermodynamic functions F for free energy and & for entropy.

SUBSCRIPTS

The following subscripts occur frequently and are not repeated in all
cases in the main list:

a, ¢, d, v, G, F: acceptor, conduction band, donor, valence-bond band,
energy gap, Fermi level.

b, ¢, ¢ J: base, collector, emitter, and junction point of Figure 4.1.

n, p: apply to electrons (negative) and holes (positive) also to #-region
and p-region.

iz intrinsic, especially in Section 12.4.

s a particular quantum state.

P: Crystal Momentum.

L, M: practical and M.K.S. units, Section 8.8.

i, j, ks ay B, v, @ b, ¢z sometimes stand for integers distinguishing
individual members of sets of similar quantities.

XX



XX LIST OF SYMBOLS

MAIN LIST

In the following list chapter numbers are integers, i.e. 5, section numbers
are decimals, i.e. 15.3, and equation numbers are in parentheses followed
by the section numbers in which they are found, i.e. (3) 14.8. Where
references are given they refer to definitions or important applications of
the symbols concerned.

a, a;, ay, a3: lattice constant, unit vectors, or periods of other periodic
structures; 5, 3, (3) 14.8, 15.3.

a: a decay constant; 12.6.

A, 4zy Ay, A,y Ay, etc: extent of a periodic structure; 5.4, 5.5, 14.8.

A: antisymmetric wave function; (6) 15.7.

A: vector potential; 15.6.

&: symbol for base of transistor; 2.2,

4: ratio of electron mobility to hole mobility; (4) 3.1, 12.9.

b: separation constant in filament; (9) 12.6.

B, Byr, B: magnetic flux density.

B = P/h: (11) 14.8.

B: half width of filament; 12.6b.

¢: generally speed of light.

¢: speed of sound; 11.3 and 17.

¢: separation constant in filament; (9) 12.6.

¢ij: elastic constants; 17.6.

¢t average longitudinal elastic constant; 17.6b. Second para. p. 528.

C: capacitance; 14.2, 15.3. .

C: half width filament; 12.6b.

D, D,, D,: diffusion constants; 12.3.

e: absolute value of the electronic charge; (¢ = ¢in 12.)

e: base of Naperian logarithms.

exp (x) = €% Y,

E, E: electric field.

&, 6(P), &4, etc.: energies of quantum states, energy differences; 5, 9.
Thermodynamic energy of system; 16.

Jf: frequency.

f,f,: Fermi-Dirac distribution functions for electrons and holes; 10.1, 16.1.

F: force.

F: free energy; (44) 16.1.

£ hole-electron pairs generated per unit volume per unit time; 12.2.

g, G: reciprocal vectors; 14.9.

g(x): even function; (3a) 14.8.

Gpe: unit vector; (5) 17.3,

A: Planck’s constant,

h = A/2x: Dirac’s 4.
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H, H., H: magnetic field.

J(C: Hamiltonian operator or function; 6.4, (26) 14.3.

i=vV-1

fy, 4, €tC.: a-c components of current; 2.2¢.

iz, iy, I;t unit vectors.

I, 1, Iy, I,: current densities and components, d-c total currents.

k: Boltzmann’s constant; 10.1,

k = P/h: wave vector; (7) 17.3.

K, K': constants in (1) (7) 7.5.

K.E.: kinetic energy either classical or quantum; (23) 14.3.

lpy In: mean free path; 8.8, (29) 11.3, 11, 17.

In: logarithm to the base e.

log: logarithm to the base 10.

L: length. Inductance in 14.2,

£: linear operator; 17.4.

m: mass of electron (except in 17).

m.: see 17.1.

ma, my: effective masses; (5) 7.5, (4) 7.6. (Also 12.)

n: density of electrons in conduction band; (1) 1.3, 10, 12.

N: a number of countable entities or a density of them.

N(&): (1)9.1.

N., N,: effective densities of states in bands; (12)(14) 10.3, 16.2.

N,, Ny, N;: densities of acceptors and donors; 9.2. lons; (32) 11.4.

N,: number of atoms in crystal; 5.5, 17.3.

N:, Ny, N., N1, N2, N3: number of unit cells along edge of periodic struc-
ture; (6) 14.8.

p: density of holes in valence-bond band; (1) 1.3, 10, 12,

2, p: momentum of electron, quantum and classical; 6.4, (18) 14.3.

Pa: (5) 15.6.

P, P, P, P,: crystal momentum; 5.5, 7.5, 14.8.

g: absolute value of electronic charge in 12.

¢, ¢i: coordinate; 6.4, 17.3.

g: position plus spin of electron; 15.7.

@: number of systems; 16.1.

2: Permutation operator; 15.7.

r: resistance for small a-c signals; 2.2.

r: hole-electron pairs recombining per unit volume per unit time; 12.2.

1, r: position vector and radius.

R: resistance,

Rg, R1, Rar: Hall constant; 8.8.

R,, 8R, Ry: vectors describing nuclear positions, points in a crystal etc.;
14.8, 17.

5: surface recombination velocity; (4) 3.2, 12.6.
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53 spin quantum number; (1) 15.7,

s, 8+ number of quantum states; 11, 17,

&: entropy; 16.

t: time.

T: absclute temperature.

u(x): odd function; (3b) 14.6.

up(r): periodic factor of Bloch function; (5) 5.5, 14.7, 14.8.
QL(r): Potential energy of electron; (6) 5.2.

v, v: velocity; 6.

Vg, Up: group and phase velocity; 6, 15.1, 15.2.

Dby Uey Det a-C voltages; 2.2.

Ve, Ve, Vi d-c voltages; 2.2, 12.5.

V: volume of crystal; 6.

dV: with various subscripts for €lements of volume in various spaces.
Vp: volume in Brillouin zone.

‘0: potential energy of nuclei; 11.3.

w: wave packets in 15.

W: number of ways of achieving a distribution; 16.1.

Wi, Wit transition probabilities; 11.2, 17.2.

W: see Figures 14.3 and 14.5.

%, X, 5, Y, 2, Z: position coordinates.

Z: nuclear charge; 9.2. Partition function; problems 16.

a: “alpha” for current multiplication in transistor; (3) 2.2.
@, a;: equivalent circuit alpha; Figure 2.7, (10) 4.1. Intrinsic alpha;

3.1c, 4.5.

a: spin wave function; 15.7.

B: fraction of injected current reaching collector; 4.1, 4.4,

B: spin wave function; 15.7.

v: fraction of emitter current carried by injected carriers; (3) 3.1
.s: Kronecker delta function, =1 for r = s and = O for r # s.
A: dilatation; (17) 17.6.

V: the vector operator, subscripts indicate coordinates involved.
e: symbol for emitter.

go: ML.K.S. permittivity.

e(2): sign of permutation; (6) 15.7.

¢ (13) 12.6.

n: (13) 12.6; 15.6.

0n 0,2 Hall angles; (2) 8.6, (16) 11.4.

k = kgt dielectric constant.

\: wave length.

uo: MLK.S. permittivity of free space.

4, kD, kz: mobility, drift mobility, Hall mobility; 1, 3.1, (8) (9) 8.7.
v: frequency. ‘
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»: decay constant; (5) 12.6.
p: resistivity.
p: charge density; (12) 12.4.
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CHAPTER 1
THE BULK PROPERTIES OF SEMICONDUCTORS

Between 1940 and 1950, the understanding of semiconductors was very
greatly increased. During that decade a substantially complete picture
was developed of the energy level schemes and motions of electrons
in silicon and germanium. This understanding is an outgrowth of the
research and development program on crystal rectifiers undertaken in con-
nection with the radar program during the war and continued in several
laboratories thereafter. Some of the wartime work was carried out in the
Radiation Laboratory of M.I.T., which operated under the supervision of
the National Defense Research Committee. The Radiation Laboratories
Series volume Crystal Rectifiers* by H. C. Torrey and C. A, Whitmer reports
this program and mentions in particular as chief contributors to crystal
research and development in England: the General Electric Company,
British Thompson-Houston Ltd., Telecommunications Research Establish-
ment and Oxford University; and in the United States: the Bell Telephone
Laboratories, Westinghouse Research Laboratory, General Electric Com-
pany, Sylvania Electric Products, Inc., and the E. I. du Pont de Nemours
and Company. It is also pointed out that the crystal groups at the
University of Pennsylvania and Purdue University, who operated under
N.D.R.C. contracts, were responsible for much fundamental work.

With the advent of the transistor, the role of semiconductors in elec-
tronic technology has assumed much greater prominence. In addition,
techniques developed in connection with the transistor program have led
to new experimental information concerning the basic processes of elec-
tronic conduction in semiconductors. Occupying a central position in
these researches are germanium filaments and micromanipulators, like
those shown in the frontispiece. These filaments play the same role as do
the tubes in vacuum and gas discharge electronics. In fact a close analogy
can be drawn between the science and application of conventional elec-
tronics and those of the new electronics of transistors. We shall accord-
ingly use the phrase transistor electronics to designate the field in semi-
conductor physics that covers fundamental processes, the analysis and
design of devices and the theory of their circuit applications. All of these
subjects are treated to some degree in the following chapters.

The semiconductors of interest in transistor electronics are electronic

! McGraw-Hill Book Company, 1948.
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- rather than ionic conductors. In ionic conductors a substantial fraction
of the current is transported with an accompanying motion of the ions.
Since the positions of the ions and atoms determine the physical structure
of the material and its chemical composition, ionic conduction produces
radical changes in the sample. In electronic conductors, however, the
atoms stay in the same positions. They may lose or gain electrons during
the conduction process, but the structure and chemical composition are
unaffected.

1.1 EXCESS ELECTRONS AND HOLES AS CURRENT
CARRIERS

Basic to the theory of semiconductors is the idea that electrons can
carry current in two distinguishable and distinctly different ways: one
being called by “excess conduction”, ‘“conduction by excess electrons”, or
simply “conduction by clectrons” and the other being called “defect con-
duction” or “conduction by holes”. The possibility that these two proc-
esses may be simultaneously and separably active in a semiconductor
affords a basis for explaining transistor action.

The quantum mechanical explanation of these processes in terms of.
“energy bands” and “Brillouin zones” is well developed and is one of the
chief topics dealt with in the following chapters. In this introductory
chapter, an elementary survey of the behavior of electrons in silicon and
germanium will be presented. The general features discussed here are
then explained on a more advanced level by the theory in the later
chapters.

Silicon and germanium form what are called “covalent crystals”, the .
atoms being held together by “electron-pair bonds” formed by the valence
electrons. Preparatory to considering the electronic structure of the
crystals, we shall first describe the covalent bond in the hydrogen molecule,
which has the simplest electron pair bond. Figure 1.1 represents two
hydrogen atoms and a hydrogen molecule. Each atom consists of a
proton and one electron. The proton weighs approximately 2000 times
as much as the electron and is a relatively immobile particle about which
the electron moves in its orbit or quantum mechanical wave function.
(We shall discuss the interpretation of wave functions further in Chapters
5 and 14.) In an isolated atom, this wave function has spherical sym-
metry, and the electronic charge is distributed on the average as a dif-
fuse sphere centered about the proton. When the two atoms are brought
close together, interaction between the wave functions of the two electrons
takes place, and the electronic clouds become modified as suggested in the
bottom part of Figure 1.1.  The result is to produce an extra accumulation
of charge between the two protons which acts to bind them together.
According to quantuwm mechanical laws associated with the “Pauli exclusion
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principle”’, the bond is especially stable when it contains precisely two
electrons. It is weakened considerably by removal of one electron and is
not greatly strengthened by the addition of a third electron. This special
stability of the electron-pair bond or covalent bond is a fundamental fact
of chemistry which is now quite well understood on the basis of wave
mechanics.!

. \ Vs
DOTS REPRESENT °

ELECTRON CHARGE
DENSITIES

TWO H ATOMS

1A=
1 ANGSTROM
=10"8 CM

L0.74A AN H, MOLECULE

Fic. 1-1—Electron-Pair Bond in the Hydrogen Molecule.

In the periodic table of the elements, as shown in an appendix, covalent
bonding is especially important in the elements of Class I1I which, according
to Hume-Rothery’s classification, form valence crystals}* The elements
carbon, silicon and germanium which come in group IV of the table have
atomic numbers, usually denoted as Z, of 6, 14 and 32. These numbers
are equal to the charge on the atomic nucleus measured in units of the
electronic charge. A neutral atom thus has a nuclear charge of +Ze
surrounded by Z electrons each of charge —e.

The elements carbon, silicon, and germanium have the common feature

1See L. Pauling, The Nature of the Chemical Bond, Cornell University Press, 1939.
1a W, Hume-Rothery, “The Structure of Metals and Alloy,” Institute of Metals, Lon-
don (1936) revised 1950.
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le—1A—»
APPROXIMATE
SCALE

(z=6) o A(z'=.14') (z=32)
CARBON SILICON GERMANIUM

Fic. 1-2—The Electronic Structures of Carbon, Silicon, and Germanium Atoms.

Fig. 1-3—The Diamond Structure, Showing How Each Atom Forms Four Bonds
with Its Nearest Neighbors.

(The lattice constant, denoted by g, is the cube edge in this figure. For diamond,
silicon, germanium, and gray tin, its value is respectively 3.56,@ 5.62, and 6.46A
where 1A = 1 angstrom = 107® cm. The distance between nearest neighbors is

v/3/16 a. The figure shows 18 atoms, but only 8 really belong to the volume 4%;
since the 8 corner atoms are each shared by 8 cubes, they contribute only 1; the 6 face
atoms are each shared by 2 cubes and contribute 3; and there are 4 atoms wholly
inside the cube. The number of atoms per cm? is thus 8/4* = 17.7,:5.00,'4.52 and
2.82 X 102 respectively.) ) <.
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indicated in Figure 1.2 of being tetravalent. Although they possess re-
spectively 6, 14, and 32 electrons all together, in each case only four of these
are able to enter into chemical reactions. The remaining electrons are
closely bound to the nucleus producing a stable “ionic core” having a net
charge of +4 units. This core can be regarded as completely inactive so
far as electronic processes in chemical reactions and in semiconductors are
concerned.

Each of these atoms tends to form covalent or electron palr bonds with
four other atoms. This tendency is completely satisfied in the diamond
structure which is the crystalline form of all three elements. This struc-
ture, shown in Figure 1.3, is a cubic arrangement and may be regarded as
made up of eight interpenetrating, simple cubic lattices like the one formed
by the atoms on the eight corners of the large cube shown. Although in-
teresting features in the theory of conduction in the diamond lattice arise
from the detailed nature of its crystal structure, from the point of view of
this chapter we are interested only in the feature represented in the upper
left-hand corner of Figure 1.3. This part of the figure shows that each
typical atom is surrounded by four neighbors regularly placed about it,
with which it forms four covalent bonds. These neighbors are arranged
on the corners of a regular tetrahedron in conformity with the known
chemical behavior of the tetrahedral carbon atom.? For purposes of dis-
cussion of the conductivity in these crystals, we shall represent the three-
dimensional array in two dimensions as is shown in Figure 1.4, indicating
that each carbon atom forms an electron-pair bond with four neighbors.
The crystal is, of course, electrically neutral as may be seen by considering
one ionic core and its share of the charge in the four electron-pair bonds
which surround it. Each such unit is electrically neutral as shown in (b).
When impurity atoms are present, as we shall discuss later, units like (b)
are not always electrically neutral.

On the basis of this valence-bond structure we can intuitively see why
diamond should be an insulator. Although it contains a large number of
electrons, as does a metal, the covalent bond is an entirely different struc-
ture from the metallic bond. The metallic bond is frequently described
by saying that the electrons behave substantially like a gas of free electrons
producing a uniform cloud of negative charge in which the positive ions of
the metal float. In the case of diamond, however, the electrons do not
behave like a gas permeating the crystal but instead more closely resemble
structural elements which hold the crystal together. In an ideally perfect
crystal, each valence bond would contain its two electrons; therefore,

2 Long before the arrangement of atoms in the diamond crystal was established by X rays,
the organic chemists had concluded that carbon formed four bonds at the tetrahedral angles—
a truly remarkable inference from observations of the optical properties of solutions of organic
compounds.
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every electron would be tightly bound and thus unable to enter into the
conduction process. The situation may be crudely represented by the
analog of an automobile storage garage in which one floor is completely
filled with automobiles. In this case, no flow of traffic would be possible.?

Conductivity can be produced in diamond, however, in a number of
ways, all of which involve destroying the perfection of the valence bond

+4 IN CORE OF
CARBON ATOM ™

VALENCE —__
ELECTRONS

EACH ATOM, WITH THE
CHARGE OF ITS SHARE OF
VALENCE-BOND ELECTRONS,
1S ELECTRICALLY NEUTRAL.

(b)

(@) ELECTRON PAIR BONDS

s a—

NO TRAFFIC POSSIBLE

‘€« ——~—~ FOUR
VALENCE BONDS

(C) PLANE DIAGRAM OF DIAMOND
LATTICE WITH BONDS REPRESENTED
BY LINES

Fic. 1-4—FElectrons in the Diamond Structure.

structure. ‘Thus if high-energy particles or quanta of radiation fall upon
the crystal, they can break the bonds. Conductivity in diamond induced
by bombardment in this way has recently received considerable prominence
in connection with “crystal counters” which have been used to detect
nuclear particles and in experiments on electron-bombardment induced

. 3 The theory of energy bands, discussed in Chapter 5, especially Section 5.6, shows how
there may be a continuous transition from valence-bond structutes to metallic structures. On
this basis the metallic properties of tin and lead do not contradict the theory presented here.
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conductivity.? In Figure 1.5(a) we represent a photon delivering its
energy to an electron which is ejected from one of the bonds.? This ejected
electron constitutes a localized negative charge in the crystal as shown in
(c), since before it arrived in that part of the crystal the electron-pair bond
structure was electrically neutral. Such an electron, which represents an
excess over and above that required to complete the bond structure in its

o=

e N
(b) TRAFFIC POSSIBLE

ELECTRON

(@) PRODUCTION OF A
HOLE-ELECTRON PAIR
BY A PHOTON

RESULTANT
DISPLACEME.NT OF HOLE

RESULTANT
DISPLACEMENT
OF EXCESS ELECTRON
1

MOTION OF
REPLACEMENT. %~
ELECTRONS

(d) RANDOM MOTION
OF A HOLE

(C) RANDOM MOTION OF AN
EXCESS ELECTRON

Fic. 1-5—Excess Electrons and Holes in a Diamond Crystal.

neighborhood, is called an “excess electron”. Since it cannot enter any of
the completed bonds in (c), it migrates about in a random manner in the
crystal under the influence of thermal agitation. If an electric field is
applied, it tends to drift in the direction of the applied force and to carry a
current. Its behavior is represented by the vehicle on the second floor

4 D. E. Wooldridge, A. J. Ahearn and J. A. Burton, Phys. Rev. 71, 913 (1947). P. J. Van
Heerden, Thesis (Utrecht, 1945). K. G. McKay, Phys. Rev. 77, 816-823 (1950), references.

5 F. S. Goucher, Bulletin of the 298th Meeting of the American Physical Society, has reported
evidence that every photon in the wave-length range of 1.0 to 1.8y absorbed in germanium
produces a hole-electron pair,
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of (b), which is now free to move. Like the vehicle, the electron also has
been lifted to a state of higher energy by being removed from the bond.
As mentioned earlier, this process of conduction by excess electrons is re-
ferred to simply as conduction by “electrons”. This procedure serves to
distinguish it from the other process whereby electrons also conduct, called
conduction by “holes”, discussed below.

The vacant space in (b) now permits traffic to flow on the first floor, in
the analogy. A similar process takes place in the crystal through the
motion of the hole left in the bond when the ejected electron moved away.
As 1s shown in (d), this hole constitutes a net, localized, positive charge in
the crystal, since before it was introduced that part of the crystal was elec-
trically neutral. Its motion takes place, as shown in (d), by a reciprocal
motion of electrons in the valence bonds (just as the vacant parking place
in (b) can move owing to the successive motions of vehicles into it).
Under the influence of an electric field, the random motion of the hole
acquires a systematic drift, and it can also contribute to the current.®

Current flow in an illuminated diamond crystal is represented in Figure
1.6. The electrons and holes, produced in pairs by the photons, drift in
opposite directions in the field; the electron, being negative, drifts in the
opposite direction from the applied field, but the electric current it produces
is, of course, in the direction of the field. In the case of the hole, the re-
ciprocal electron motions are also opposite to the direction of the field
(on the average). As a consequence, the net result is that the hole drifts
to the right, and since its charge is positive it produces a current to the
right. (The result obtained could be represented by raising the right
side of the garage of Figure 1.5(b). The vehicle on the top floor would run
to the left and the vacant place on the first floor would shift to the right.)
If the source of illumination is removed, the photoconductivity dies away
and the crystal then returns to its normal state. This can occur by the
recombination of holes and electrons as shown in Figure 1.6(b). If the
electron drops into the hole, both the hole and electron disappear and the
bond structure becomes complete, the excess energy being given up to
the atoms in the form of thermal vibrations as suggested in Figure 1.6(b).”

On the basis of quantum-mechanical theory, as discussed in Chapter 7,

8 1n this chapter we present an oversimplified picture of the conduction process. Neither
the electron nor hole may be considered so localized as shown in Figure 1.5; they are even
less localized than in Figure 1.14.  The replacement process for the hole is not so simple either.
So far as the idea of two kinds of conduction is concerned, the picture presented here is correct.
Chapters 5 to 8 are required to give the same picture in more precise terms. The basic theory
of semiconductors, which gives analytic form to the ideas discussed here, is due to A. H.
Wilson, Proc. Roy. Soc. 133A, 458 (1931).

7 The process of recombination may actually be much more complicated and may involve
intermediate stages in which the hole or the electron is trapped. For further discussion ses
K. G. McKay, Phys. Rev. 74, 1606-1621 (1948); and Section 3.1d and Chapter 12.

[
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it is found that a very high degree of symmetry exists between the behavior
of electrons and the behavior of holes. This symmetry is not suggested
by the analog of the parking garage. In a garage, it would obviously be
very much easier to move the vehicle on the second floor than to move the
hole on the first floor. According to the quantum mechanics of electrons
in crystals, there is only a very slight difference in these two processes, and
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Fi6. 1-6—Photo-conductivity in Diamond.

one may think of the hole as moving through the crystal as a positively
charged particle with much the same attributes as a free electron except
for the sign of its charge. :

It is evident that an important distinction exists between behavior of
electrons which have been excited out of the valence bond structure and
those which remain in it. The concepts and terminology of the theory of
Brillouin zones and energy bands have been developed to describe these
distinctions. According to this theory, which is discussed in Chapters 5
to 7, electrons in the valence bonds occupy a set of energy levels covering a
certain band of allowed energies. All of these energy levels are occupied
in the ideal crystal, and the band of energy levels is referred to as the filled
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band, valence-bond band, or simply valence band. It corresponds to the
first floor of the garage. It is impossible for an electron to have a higher
energy than the highest state in the filled band unless it is given a suffi-
ciently large increment of energy so that it may become a free or excess
electron of the sort discussed previously. The electrons in these free states
may also have various energies of motion and thus give rise to the energy
level scheme of the empty band or conduction band (the second floor). The
filled band is also a band which permits conduction but is not referred to as
a “conduction band”. The filled and empty bands are separated by a
region of forbidden energies for which there are no energy levels for the
electrons in the crystal. In this introduction the results of the energy
band theory will be used without reference to their theoretical basis.

If the temperature is sufficiently elevated, spontaneous breaking of the
covalent bonds by thermal agitation will occur, producing electrons and
holes in equal numbers.  This effect would occur at such high temperatures
in diamond that it has not been observed. However, it plays a major
role in silicon and germanium at temperatures well within the range of
investigation in the laboratory.

1.2 IMPURITY SEMICONDUCTORS; DONORS AND
ACCEPTORS

If the only cases of conductivity open to investigation were like those
already discussed, for which electrons and holes are present in equal num-
bers, the problem of interpreting the data would be very difficult. For-
tunately, in the semiconductors silicon and germanium, there are cases in
which conductivity is due to excess electrons only or to holes only. We
shall discuss some specific examples for silicon! and indicate later how these
are related to germanium.

If the conductivity of the sample is due to excess electrons it is called
n-type, since the current carriers act like negative charges; if due to holes, it
is called p-type, since the carriers act like positive charges. Figure 1.7 shows
an example of z-type silicon. The conductivity arises from the presence
of arsenic atoms which are termed “impurities”, even though added de-
liberately in the otherwise pure silicon. The arsenic atom, as indicated,
has five valence electrons surrounding a core having a charge of +35 units.
On the basis of evidence which we shall discuss, it is believed that each
arsenic atom displaces one of the silicon atoms from its regular site and
forms four covalent bonds with the neighboring silicon atoms as shown in
Figure 1.7, thus using four of its five valence electrons. The extra electron

! A systematic analysis of the behavior of silicon with impurities of the sorts discussed here
was first carried out by J. H. Scaff, H. C. Theuerer, and E. E. Schumacher, J. of Metals 185,
383-388 (1949). Their work was stimulated by the development of silicon detectors for
microwave use by R. S. Ohl, also of Bell Telephone Laboratories, in the pre-war years.
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cannot fit into these four bonds and is free to move about the crystal. As
discussed previously, this excess electron constitutes a mobile, localized
negative charge. The arsenic atom, on the other hand, is an immobile,
localized positive charge, since its core, with a charge of 45 units, is not
neutralized by its share (—4) of the charge in the valence bonds. Its net
charge, therefore, just balances that of the excess electron it contributes
to the crystal. Thus arsenic impurity atoms add excess electrons but do
not disturb the over-all electrical neutrality of the crystal. The negative

o=
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JEXCESS + CHARGE
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IN SILICON CRYSTAL IN CRYSTAL

F1c. 1-7—Excess or Electron Conduction in Silicon Containing Arsenic.

electrons are attracted to the positive arsenic atoms and at low tempera-
tures become bound to them. However, at room temperature, thermal
agitation shakes them off and the electrons are free as shown in Figure 1.7.
(Measurements of conductivity over wide temperature ranges yield valu-
able information, as we shall discuss later.)

A p-type semiconductor is shown in Figure 1.8. In this case the added
impurity, boron, has a valence of three and therefore cannot complete the
valence bond structure surrounding it. The hole in one of the bonds to the
boron atom can be filled by an electron from an adjacent bond, and the
hole can thus migrate away, as described in Figure 1.5(d). The boron
thus becomes an immobile, localized negative charge. Because of the
symmetry between the behavior of holes and electrons, we can describe
the situation shown in Figure 1.8 by saying that the negative boron atom
attracts the positively charged hole but that thermal agitation shakes the
latter off at room temperature so that it is free to wander about and con-
tribute to the conductivity.
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Impurities with a valence of five are called “donor impurities” because
they donate an excess electron to the crystal; those with a valence of three
are called “acceptor impurities”, since they accept an electron from some-

AN ELECTRON HAS
BEEN ACCEPTED

_~BY BORON ATOM
TO COMPLETE ITS
VALENCE BONDS

&= Tt

TRAFFIC POSSIBLE

~~~._ BORON ATOM HAS
7 EXCESS = CHARGE
’

P-TYPE SILICON
(BORON ACCEPTORS)

CHARGED " FREE NEUTRAL
BORON ATOM BORON ATOM SILICON ATOM
IN SILICON CRYSTAL IN CRYSTAL

F1c. 1-8—Defect or Hole Conduction in Silicon Containing Boron.

where else in the crystal to complete the structure of the valence bonds
with their neighbors, thus leaving a hole to conduct. These terms, to-

gether with the other features already discussed, are summarized in Table
1.1.

TasLeE 1.1 Summary or FeaTures or IMpuriTy CoNDUCTION IN
SiLicon axp GERMANIUM

Conductivity Type n-Type or Excess ?-Type or Defect
Conduction by (excess) electrons holes
Energy band in which carrier empty or conduction full or valence-bond

moves or valence
Sign of carrier negative positive
Valence of impurity atom 5 3
Name for impurity atom donor acceptor
Elements of Group IV: | Elements of Group III:
N . Phosphorus, P Boron, B
Typical impurities Arsenic, As Aluminum, Al
Antimony, Sb Gallium, Ga
Indium, In
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In Figure 1.9 we illustrate how the number of carriers depends on tem-
perature for a sample of silicon with five donors and two acceptors. At
absolute zero, the three extra electrons furnished by these seven atoms
are all bound to the donors. As the temperature is raised to —125°C, or
148°K (or absolute temperature on the Kelvin scale), thermal agitation is
sufficient to shake off the electrons. However, they recombine so rapidly
that on the average only one electron out of three is free to conduct. At
room temperature, two out of three can conduct; however, thermal agita-

'/' — O — +
@ ) | @ ® =
ABSOLUTE ZERO ~125°C ROOM TEMPERATURE +630°C
@ DONORS (N-TYPE} - ELECTRONS

(2 acceptors (p-TyPe) - HoLES

Fic. 1-9—Dependence upon Temperature of Hole and Electron Densities
in n-Type Silicon.

tion is insufficient to break the valence bonds, and the number of holes is
about 107!2 times the number of electrons.? (The situation at room
temperature in germanium is quite different, and the hole concentration may
be about 1 percent of the electron concentration in high resistivity samples.?)
At higher temperatures an appreciable fraction of the valence bonds is
broken thermally, and holes and electrons are created in pairs. In Figure
1.9 at 630°C, the number of carriers produced thermally outweighs those
due to impurities by 6 to 1, and the conductivity is essentially the same as
if there were no impurities present at all. Under these conditions the
sample is said to be in the insrinsic range, since the conductivity exhibited
is an intrinsic property of silicon itself and independent of the impurity
content.

The data shown in Figure 1.9 have been chosen to fit, approximately, an
actual silicon sample (see Figure 1.12) studied by Pearson and Bardeen.

2 This value is estimated by extrapolating Figure 1.12 discussed later with the aid of Figure
16.9 in Chapter 16.

3 The situation for germanium at room temperature is discussed in Section 10.4 and shown
in Figure 10.7.
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1.3 INTERPRETATION OF DATA ON CONDUCTIVITY
AND HALL EFFECT

Pearson and Bardeen! have investigated a number of silicon samples
prepared by J. H. Scaff and his colleagues containing varying amounts of
added phosphorus and boron. We shall quote a number of results from
their paper, to which the reader is referred for additional technical details.
Before discussing the nature of these results, however, we should indicate
the general outlines of the experimental procedure used for obtaining the
basic date on the numbers and behaviors of the electrons and holes.

The conductivity of a semiconductor containing holes and electrons
depends upon the number present and the ease with which they are moved
by an applied electric field. (These subjects are discussed at length in
Chapters 8, 10, and 11.) This latter property is called the “mobility’” and
is expressed as the drift velocity of the particle in centimeters per second in
an electric field of one volt per centimeter. It has, therefore, the dimensions
of cm?/volt sec. The conductivity (in chm™ em™) due to excess electrons
is equal to the total charge per unit volume (in coulombs/cm®) of the
electrons which are free to move times the mobility. The total charge
is, of course, equal to the density of electrons (in cm™%) times ¢ the electronic
charge (1.60 X 107 coulombs). Combining this with the conductivity
due to holes leads to the equation for conductivity

= e(nun + pup) ey

where # and p (for negative carriers and positive carriers) are the densities
of holes and electrons, respectively, and u, and p, their respective mobili-
. ties. (This formula is derived in connection with Figure 8.6.)

A measurement of conductivity alone, therefore, gives only one item
of information about the four unknown quantities occurring in this
equation. Fortunately, another relationship between these same four
quantities can be obtained by measuring the Hall effect.

The Hall effect, described in Chapter 8 in more detail, occurs when a
magnetic field is applied at right angles to the direction of current flow in
the specimen. It is found that this produces a transverse voltage, which
can be measured. When the Hall effect has been measured, it gives
another equation relating the four unknown quantities. However, if
an z-type sample is dealt with in the impurity conduction temperature
range, p may be taken as equal to zero. Under these conditions measure-
ments of conductivity and Hall effect permit a separate determination of
n and p,. Similarly, p and g, can be determined in p-type samples. ‘Thus,
by combining information on various samples it is possible to find the

1 G. L. Pearson and J. Bardeen, PAys. Rev. 75, 865-883 (1949).
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behavior of wn and w, as a function of temperature. With p, and u,
regarded as known, it is then possible to obtain the values of 7 and p even
in the case where both holes and electrons are simultaneously present.
The mobilities for several cases of interest are quoted in Table 1.2. The
method of measurement is discussed in Section 3.1 and Chapters 8, 11,
and 12.

Tasie 1.2 Mosiuities iNn Cm/Sec per Vorr/CM

Electrons pn, Holes pp
Carbon (diamond)................. ... ... . >400° >200*
. 900° —
156° —
SHICON . o e ettt e e 300° 1007
Germanium
(Hall mobility).................. ..., 2600° 1700°
(Drift mobility) ............. ... ... L 36007 17007

%K. G. McKay, Phys. Rev. 77, 816-825 (1950).

®C. C. Klick and R. J. Maurer, Phys. Rev. 76, 179 (1949).

¢, Seitz, Phys. Rev. 73, 549-564 (1948).

4G, L. Pearson and J. Bardeen, Phys. Rev. 75, 865-883 (1949),

¢G. L. Pearson, Phys. Rev. 76, 179 (1949).

7¥. R. Haynes, unpublished results presented to the American Physical Society at Chicago,
November 26, 1949. (See Section 3.1 and Chapter 12 for further details.)

We shall next consider the data analyzed by Pearson and Bardeen for
a series of samples containing various amounts of added phosphorus.
Phosphorus, like arsenic, has a valence of five and produces 7-type material
(it was not used in the example of Figure 1.7 in order to reduce the con-
fusion between the symbol P for phosphorus and p-type, which is not
produced by phosphorus). Figure 1.10 shows the resistivities for four
samples with varying phosphorous content plotted as a function of temper-
ature.?

Data from the Hall effect are plotted in Figure 1.11. The results have
been expressed in terms of the density of excess electrons per cubic centi-
meter. Since the density of silicon atoms is 5.00 X 10?2 per cubic centi-
meter, it is seen that sample D corresponds to one electron per 250 atoms
in the crystal. For sample A at room temperature, on the other hand,
there is only one conduction electron for approximately 500,000 atoms in

2 The phosphorous content on the curves refers to that added to the molten silicon. Some
of this phosphorus probably evaporates before being incorporated in the solidified silicon;
furthermore, the phosphorus tends to remain in the molten silicon and be segregated in the
last portions to solidify. The net result is to reduce the phosphorous content in the samples
measured for Hall effect below the proportion added to the melt. Experimental evidence
that one excess electron is contributed by each donor in the solid is furnished by data obtained
with radioactive antimony in germanium discussed at the end of this chapter.
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the lattice. Figure 1.12 shows a more detailed analysis of sample A.

This diagram shows both experimental points (the circles and dots) and

theoretical curves (the solid lines) obtained on the basis of considerations

of the energy level diagram for the semiconductor and the Fermi-Dirac
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F1c. 1-12—Comparison between Predicted and Observed Electron and Hole Densities
Versus Temperature.

statistics, subjects discussed in later chapters. It it seen that the theo-
retical interpretation of the data leaves little to be desired. The physical
picture behind the theory is the one already described in connection with
Figure 1.9. The concentrations of acceptors and donors and for sample
A were 1.5 X 10'® and 12 X 10'® cm™ (a ratio of 1 to 8 whereas in Figure
1.9 we have shown a ratio of 2 to 5).

The mobility of the electrons in the various samples is shown in Figure
1.13. It is to be noted that at high temperatures there is an “intrinsic



1.3 INTERPRETATION OF CONDUCTIVITY AND HALL EFFECT 21

mobility”, at least for samples A and B (C and D we will discuss later),
which arises from the interference to the electrons’ motion due to thermal
vibrations of the atoms of the crystal. For small impurity concentrations
this term is independent of the impurities. For lower temperatures, the
mobility is reduced by the impurities; in this case the process which limits
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the speed of drift in an applied electric field is the deflection of the drifting
electrons by the electrostatic field of the charged impurity atoms. These
subjects are discussed in Chapter 11.

The reader experienced with plots like Figures 1.11 and 1.12 will be
aware that from them activation energies can be obtained; just as they
can be obtained from the Richardson plot for thermionic emission or the
plot of the temperature dependence of a chemical reaction constant. In
all of these cases one encounters terms of the form

y = e—-e/kT (2)
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where y is the quantity studied, & is the “activation energy” involved, and
kT is thermal energy. If Iny is plotted against 1/7, a straight line

Iny = —(&§/k) X (1/T) 3)
is obtained whose slope is (8§/k) from which & can be found since & (Boltz-
mann’s constant) is known.

There are three energies of particular importance that can be obtained
from studies of the slopes of the In # and In p versus 1/T plots. (However,
the analysis involves much more than simply finding the slope of the plots.)
These energies are (1) the energy required to break a valence bond and
create a hole and electron pair and (2) the energy required to remove an
electron from a donor or (3) a hole from an acceptor. The energy required
to break a bond can be obtained almost at once from the slope of the line
of Figure 1.12 in the intrinsic range. Theory shows that this slope should
give & /2k where & is the energy required to break the bond. The
analysis for & in #-type samples or &3 in p-type samples is much more
involved. At very low temperatures the slopes are expected to be &;/k
and not 8&;/2k (see Chapter 16, Figures 16.7 and 16.8 for details). How-
ever, values for these energies may be obtained by making a proper analysis
of the data. The values obtained by Pearson and Bardeen for silicon are:

Energy to break bond 1.11 electron volts
Energy to remove electron from donor 0.054 electron volt
Energy to remove hole from acceptor  0.08 electron volt

(An equally thorough analysis for germanium has not been published; we
have chosen representative values of 0.72, 0.04, and 0.04 for purposes of
illustration. For diamond, the value to break the bond is 6 or 7 electron
volts from ultraviolet absorption data; the energies estimated as described
below to separate electrons from donors or holes from acceptors are prob-
ably about 0.35 electron volt.?)

The small energies of binding of electrons to the donors and of holes to
the acceptors can be explained on the basis of a model proposed by H. A.
Bethe. The electron is supposed to move in the field of the donor in
much the same way as an electron moves about the proton in a hydrogen
atom.* There is one important difference: Because the net positive
charge of the phosphorous ion is embedded in a dielectric medium, the
force of attraction is reduced by the dielectric constant—about 13 for
silicon. As a result of this the electron in the bound state about the

3 Ultraviolet data from A. J. Ahearn, Phys. Rev. 73, 1113 (1948). Ahearn also finds that
10 ev of a-particle energy are required for each bombardment.produced electron, and K. G.
McKay, Phys. Rev. 77, 816-825 (1950), finds 10 ev for 14-kv electrons. The dielectric con-
stant of diamond is estimated as about 6.2 from its index of refraction. McKay finds trap
energies of about 0.3 electron volt for electrons.

4 This type of approximation was first published by G. Wannier, Pys. Rev. 52, 191-197
(1937).
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phosphorous atom moves in a very large orbit whose radius is 13 times
that of an electron in a hydrogen atom, giving a binding energy of about
0.08 election volt (discussed in Chapter 9). The wave function overlaps
a large number of silicon atoms as is indicated in Figure 1.14 which is

PHOSPHORUS ATOM EXCESS ELECTRON
HAS EXCESS + CHARGE\\ ,,FROM PHOSPHORUS ATOM
\

S
4
%
4

N

P

D (54

\
APPROXIMATE SCALE OF WAVE FUNCTION
INDICATED BY DOTS

Fi1c. 1-14—Wave Function of Electron Bound to Phosphorous Atom in Silicon.

approximately to scale. The fact that the wave function extends over so
many atoms suggests that its detailed behavior around the impurity
atom itself is unimportant and that the binding energy produced by the
impurity is due almost entirely to its charge. This explains the observed
fact that all donor and acceptor impurities produce about the same binding
energy for electrons and holes. The difference in binding energy between
electrons and holes is explained by Pearson and Bardeen on the basis of a
difference in effective mass, a concept discussed in Chapter 7. Further-
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more, they find the activation energies quoted above only for their
purest specimens; for others, the activation energy is less, a trend which
they explain by considering the effects of other impurity atoms on an
electron trying to escape from one impurity atom.

When relatively large concentrations of impurities are present, new
effects occur; these are illustrated in Figure 1.11 by samples C and D in
which the number of electrons is substantially independent of temperature.
The explanation of this behavior is that the impurities have moved so
close together that appreciable overlapping of the impurity wave functions,
such as those shown in Figure 1.14, occurs. Under these conditions the
extra electrons and the impurity atoms play much the same role as the
electrons and ions in a metal, and the excess electrons form a degenerate
electron gas which moves through the irregularly distributed array of
positive ions. The theory of electrical conductivity for these semi-
conductors is very similar to that of metallic alloys, as is discussed in some
detail in Chapter 11. The conductivity of the semiconductors is much
smaller than that of the metallic alloys, however, because the density of
carriers is much smaller; aside from this difference, the behavior of C
and D are substantially like metallic alloys for low temperatures. As
the intrinsic range is approached, however, the number of carriers and
the conductivity increase rapidly with increasing temperature.

The results described for silicon for the case of electrons in connection
with Figures 1.9 to 1.14 are obtained in substantially the same form for
holes in silicon® and for electrons and holes in germanium. An important
and characteristic feature of germanium is that the energies required to
remove holes from acceptors and electrons from donors are so small that
a negligible fraction of the excess electrons or holes are bound to the impurities
at room temperature. 1In other words, the donors and acceptors are effec-
tively fully ionized. This fact simplifies considerably the theory of trans-
istor electronics for germanium.

Germanium samples show the interesting property that heat treatment
at temperatures above 500°C appears to produce p-type impurities.
Prolonged heat treatment at lower temperatures causes these impurities
to disappear. One theory is that these effects are not due to chemical
impurities at all but instead to disorder in the germanium lattice. The
total number of disordered atoms predicted from theory is in approximate
agreement with the concentrations observed.®

5 G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949).

6 The fraction of atoms disordered at temperature T should be approximately exp (— &/kT)
where & is the energy required to disorder an atom. From data on self-diffusion in metals
{J. Steigman, W. Shockley, and F. C. Nix, Phys. Rev. 56, 13-21 (1939)], we may estimate that
& is between 10kTy and 20kTy, where T is the melting point, This leads to values of
1077 to 1071 for the exponential. The observed values correspond to about 10'® acceptor
centers or a fraction of about 1073 of the atoms.
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Evidence that disorder in the lattice produces p-type conductivity in
germanium has been obtained by K. Lark-Horovitz and his colleagues.”
When high resistivity z#-type germanium is bombarded with alpha particles
or deuterons, it is converted to p-type, whose conductivity increases with
increasing exposure to bombardment. It has been established that this
effect is not due to transmutation of the germanium to another element
but instead to the creation of disorder in the crystal, that is, germanium
atoms knocked into interstitial positions leaving vacant lattice points
behind. These “lattice defects” act as acceptors. There appears to be
no reason why the wave functions around these defects should be like
those shown in Figure 1.14, and, consequently, one might expect such
samples to show different activation energies at low temperatures. The
data on this subject are reviewed in Chapter 9.

Before closing this introduction, some additional experimental evidence,
which supports the general picture that conductivity is produced by sub-
stitutional impurities of the sort described, should be presented. There
are three types of evidence which indicate that the impurity atoms enter
the lattice substitutionally in lattice sites normally occupied by atoms of
the pure element rather than interstitially by squeezing into vacant spaces
in the lattice:

1. The conductivity produced by the impurities is of just the sort which
would be expected on the basis of their ability to complete or not to com-
plete the valence bond structure which would surround them if they
occupied normal sites. (See Table 1.1.) On the other hand, if they were
to enter the lattice interstitially, they would not fit into the valence-bond
scheme at all, and there would be no reason for supposing that consistent
p- and n-type behavior would occur for elements with valences of three
and five.

II. The activation energies required to remove electrons from the
impurities, as quoted from the work of Pearson and Bardeen, show good
agreement with the value to be expected theoretically on the basis of the
wave functions of Figure 1.14.

II1. There is evidence obtained by X-ray studies of the lattice constant
for the more concentrated alloys of silicon with phosphorus and boron.
The lattice constant of these alloys has been studied as a function of
concentration and is found to decrease in essentially the way that would
be expected if the phosphorus and boron atoms entered the lattice sub-
stitutionally, these atoms being in both cases smaller than the silicon
atom. However, if they were to enter the lattice interstitially, it
would be expected that they would tend to expand the lattice and pro-

7 K. Lark-Horovitz, E. Bleuler, R. Davis, and D. Tendam, P&ys. Rev. 73, 1256A (1948).

R. E. Davis, V. A. Johnson, K. Lark-Horovitz, and S. Siegel, Phys. Rev. 74, 12554 (1948).
V. A. Johnson and K. Lark-Horovitz, Phys. Rev. 76, 442-443 (1949).
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duce an increase in lattice constant in contradiction with the experi-
mental facts.

In the case of germanium it has been verified that even in some relatively
pure samples, in which the impurity content is much too small to determine
by conventional chemical analysis, the conductivity may be controlled by
minute amounts of added impurities. This investigation has been carried
out with the aid of radioactive antimony which has been added to melts
of germanium. It has proved possible to measure the antimony content
by radioactive means and to establish that there was good agreement
between the antimony content and the number of electrons produced.®

ProBLEMS

1. An ingot of germanium is formed by melting together 100 gm of
germanium and 3.22 X 107® gm of antimony. Assuming that the
antimony is uniformly distributed, show that the density of antimony
atoms is 8.70 X 10 cm™3. [The density of germanium is 5.46 gm/cm?
and its atomic weight is 72.60; the atomic weight of antimony 1s 121.76.
One gm atom, that is 72.6 gm of germanium, contains Avogadro’s number

= 6.02 X 10%) atoms. There is a slight discrepancy between the density
of germanium atoms deduced from X-ray measurements, Figure 1.1, and
from density and atomic weight.]

2. Assuming that the excess electrons due to the antimony atoms of
problem 1 are fully excited at room temperature and that their mobility is
3600 cm?/volt sec, show that the conductivity of the ingot of problem 11is
0.50 ohm™ cm™! or 50 ohm™ meter™ in M.K.S. units. Hence show that
a specimen 1 mm square in cross-section and 2 cm long would have a resist-
ance of 400 ohms.

3. Assume that the ingot contains 0.78 X 107 gm of gallium, atomic
weight 69.72, in place of antimony. Show that the density of gallium
atoms will be 3.68 X 107 1* cm™. Taking u, as 1700 cm?/volt sec show that
the conductivity will be 0.10 ohm™ em™.

4. Assume that both the gallium and antimony discussed above are added
to the same 100 gm ingot. Why will the conductivity be 0.29 ohm™! em™!
and not 0.6 ohm™ ecm™*? Will the material be #-type or p-type?

5. Assume that a flash of light falls uniformly on the specimen of problem
2 and that a total number, 1.74 X 103, of photons are absorbed and that
each produces one hole-electron pair. Show that the resistance will drop
to 162 ohms.

6. Show that if 10 volts are applied from end to end of the specimen of
problem 2, an electron drifts with a speed of 18,000 cm/sec and requires
1.11 X 107* sec to traverse the length of the specimen.

8 G. L. Pearson, J. D. Struthers, and H. C. Theuerer, Phys. Rev. 75, 344 (1949), 77, 809-813
(1950).




CHAPTER 2
THE TRANSISTOR AS A CIRCUIT ELEMENT

2.1 IDEAS ABOUT AMPLIFICATION PRIOR TO THE
TRANSISTOR

2.1a. Introduction. In Chapter 1, we have presented a description of
the behavior of holes and electrons appropriate to circumstances in which
their distributions in space and time are substantially uniform. In order
to deal with transistor action, however, and with related phenomena in
semiconductors, we must describe what happens when the concentrations
of both holes and electrons vary with position and time. Studies of such
phenomena have been greatly facilitated from the experimental point of
view by a series of new techniques and experimental procedures developed
in connection with transistor research. The experiments permit the
isolation and individual analysis of a number of the separate processes
which go on in connection with transistor action. For this reason we shall
discuss them in Chapter 3 before presenting in Chapter 4 the theory for the
conventional or type-A transistor' invented by J. Bardeen and W. H.
Brattain.

In this chapter we shall review briefly the history of semiconductor
development and research, especially in connection with amplifying
devices, and show how this was culminated by the invention of the trans-
istor. We shall then give a description of the transistor itself from a
phenomenological point of view and describe its equivalent circuit. The
exposition in later sections is directed in considerable measure towards
giving a physical meaning to the purely formal equivalent circuit.

The general level of presentation aimed at in Part I is qualitative so
far as the theory of holes and electrons is concerned, and an attempt has
been made to present the necessary semiconductor theory in descriptive
terms covering the thermal generation of holes and electrons, their recom-

LThe first authoritative treatment of the type-A transistor is that of J. Bardeen and
W. H. Brattain, “Physical Principles Involved in Transistor Action”, Phys. Rev. 75,
1208-1225 (1949). Other publications are as follows: J. Bardeen and W. H. Brattain, “The
Transistor: A Semi-Conductor Triode”, “Nature of the Forward Current in Germanium
Point.Contact Rectifiers”, Phys. Rev. 74, 230, 231 (1948); R. M. Ryder, “The Type-A
Transistor”, Bell Laboratories Record 27, 89-93 (March, 1949); J. N. Shive, “The Double
Surface Transistor”, Phys. Rev. 75, 689-690 (1949); J. A. Becker and J. N. Shive, “The
Transistor; A New Semi-Conductor Amplifier”, and R. L. Wallace and W. E. Kock, “The
Coaxial Transistor”, both in Electrical Engincering 68, 222-223 (1949); R. M. Ryder and
R. J. Kircher,“Some Circuit Aspectsof the Transistor”, Bell Syst. Tech. J. 28, 367-400 (1949).
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bination, and their motions in electric and magnetic fields. The energy
band theory described in Parts II and III has been developed especially
for such situations; however, it is not necessary to invoke the general
theory in order to get a good mental picture of the important processes
in transistor action. In some cases we have given quantitative results
and formulae; however, in order to make this material available at an
early date in the transistor art, it has not been feasible to prepare a general
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exposition of the quantitative theory of transistor action to the extent that
has been attempted for the underlying theory of holes and electrons.

The basic idea that semiconductors may be made to amplify electrical
signals is relatively old and, as we shall discuss in the next paragraph,
amplification by negative resistance thermistors had actually been achieved
prior to the invention of the transistor. The similarity of the current-
voltage curves for vacuum-tube diodes and for crystal rectifiers, Figure 2.1,
suggested to many people that it might be possible to make an amplifier
from a crystal diode by somehow adding a grid. The desired aim has now
been accomplished by the transistor, but, as we shall discuss, the amplifying
action does not employ a grid. Another striking difference is that, in a
vacuum-tube diode, it is the forward current that is controlled by the
insertion of the grid. In the transistor, on the contrary, the output contact
is biased in the low-current, high-resistance direction, and the current is
enhanced and controlled by the input contact.
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Amplifying action by use of the negative-resistance characteristics of
thermistors had been achieved and analyzed relatively early in the
thermistor development work. The negative resistance of a thermistor is
made possible by the negative temperature coefficient of resistance of semi-
conductors such as, for example, that shown for the intrinsic range in
Figure 1.10. As the current through a thermistor is increased, the voltage
at first rises in accordance with Ohm’s law. For large currents, however,
appreciable heating of the thermistor results, thereby causing a decrease
in resistance, and the current-voltage characteristic becomes nonlinear.
A sufficiently high current increases the temperature so much that the
resulting drop in resistance may actually produce a voltage decrease and,
consequently, a negative differential resistance occurs. This negative-
resistance characteristic can be used to make oscillators or networks with
gain rather than attenuation, provided the frequencies are low enough
so that the temperature of the thermistor can follow the variations of
current. This requirement sets an upper frequency limit which depends
on the thermal time constants under the operating conditions. By making
the physical dimensions small and the thermal conductivities high, stable
oscillations have been produced at frequencies as high as 100,000 cycles
per second.? However, there is an additional mechanism involved which
will limit the frequency no matter how small the structure is made: Time
is required for the numbers of electrons and holes to come to equilibrium
after the temperature is changed. Not much is known about this time
for most semiconductors. We shall discuss later in Section 3.1d some
data bearing on this time for germanium at room temperature.

2.1b. Modulation of Conductivity by Surface Charges. In the Solid
State Research Group at Bell Telephone Laboratories, the hope of dis-
covery of a purely electronic, rather than thermal, semiconductor amplifier
was bolstered by the discovery of what might be called an existence theorem,
to use a mathematical term, that such an amplifier was possible, or at least
not contradictory to the theories of semiconductors and statistical me-
chanics. The particular device envisaged is shown in Figure 2.2. It
consists of a very thin layer of semiconductor placed on an insulating
support. This layer of semiconductor constitutes one plate of a parallel-
plate capacitor, the other being a metal plate in close proximity to it. If
this capacitor is charged, as shown in part (c), with the metal plate
positive, then the additional charge on the semiconductor will be repre-
sented by an increased number of electrons. At room temperature, in
germanium, a negligible number of these electrons will be bound to the
donors (see Section 10.4 for details). Consequently, the added electrons
should be free to move and should contribute to the conductivity of the
semiconductor. In this way, the conductivity in the semiconductor can

2 Personal communication from J. A. Becker.
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be modulated, electronically, by a voltage put on the capacitor plate.
Since this input signal requires no power if the dielectric is perfect, power
gain will result.

The effects to be expected from such an arrangement are very appreciable,
a conclusion which we shall illustrate for its own sake, and also for the
purpose of showing how concentrations of electrons and holes may be
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(The extra electrons induced on the surface in (c) carry an added current.)

used in calculations. Suppose the layer consists of #z-type germanium
with a resistivity of 2.4 ohm cm.® The concentration of electrons is
obtained from the formula for conductivity in ohm™ em™ (or coulombs/
volt sec cm)

¢ =~ =nep=ncm 2 X 1.6 X 107 coulombs X 2600 cm?/volt sec
p
= n X 4.2 X 1071 coulombs/volt sec cm @
31n M.K.S. units, this is a layer 1077 m = T thick with conductivity ¢ = 10%/24 =
42 ohm™ m—! with electrons having mobility of 0.26 m?/volt sec. The number of electrons
per unit volume is given by o = neu so that n = 42/0.26 X 1.6 X 1072 m™3 giving 1.0X 10
per square meter of surface. A field of 30,000 volts/cm or 3 X 10% volts/m produces a surface
charge for a medium of dielectric constant 2 of 2 X g X 3 X 108 = 5.3 X 107% coulombs
m~2 or 3.3 X 10 electrons m—2,
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giving
n=1/24 %X 42X 1071% = 1.0 X 10'® electrons per cm®, (2)

Inalayer T = 10004 = 107° cm thick there will thus be T = 1.0 X 101°
electrons per cm?.  We shall next calculate how many electrons will be
induced by a field in the dielectric of 30,000 volts/cm or 100 electrostatic
volts/cm. This field will produce a displacement of «xE/4r electrostatic
coulombs. Taking k = 2, for a typical dielectric between the capacitor
plates, we calculate a charge of 2 X 100/4x = 16 stat. coulombs per cm?,
corresponding to 16/4.8 X 107'% = 3.3 X 10'® electrons per cm? or
three times the number normally present. Such a field should thus
quadruple the conductivity of the germanium layer.

Experiments have been carried out with layers of various semiconduc-
tors, and effects of the sort discussed have been observed. However, the
degree of modulation has been somewhat less than that calculated above.
For layers of germanium about 5000A thick, in which the mobility was
only about 40 cm?/volt sec, it was apparent upon analysis of the data that
only about 10 per cent of the induced charges (holes in this instance since
the evaporated germanium was p-type) were effective in changing’ the
conductance. This reduced effectiveness can be accounted for on the
basis of a theory dealing with the behavior of the current carriers at a semi-
conductor surface.

2.1c. Bardeen’s Theory of Surface States. J. Bardeen has proposed
that the ineffective portion of the induced charge is lodged in states localized
at the surface, employing for this purpose his theory of surface states, which
he has so fruitfully applied to the explanation of a number of otherwise dis-
connected facts about semiconductor surfaces. A thorough discussion of
his surface state theory would require the mathematics of energy bands and
Fermi-Dirac statistics to an extent not in keeping with the level of exposi-
tion of Part I. We shall effect a compromise by quoting conclusions based
on his theory as it applies to the modulation of conductivity by surface
charges without elaborating upon the underlying reasoning. We shall
adopt the same procedure later in discussing the nature of transistor action
with metal point contacts. )

The conclusion reached by Bardeen is that electrons which move in the
body of the semiconductor can become tightly bound in surface states on
the surface of the semiconductor and thus become immobilized. The
Surface States Diagram, Figure 2.3, represents the free surface of an #-type
semiconductor and shows, in part (a), eight electrons trapped in the sur-
face states. These electrons repel other electrons in the conduction band
and thus produce a layer of depleted conductivity below the surface. In
this layer there are eight unneutralized donors, so that the semiconductor

4 W. Shockley and G. L. Pearson, Phys. Rev. 74, 232-233 (1948).
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surface as a whole is neutral. (In the diagram the donor ions are arranged
in a regular scheme so as to facilitate counting them; in a sample of ger-
manium, such as we have just discussed, the donors will be distributed at
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Fic. 2—3—Surface States Diagram, Showing Bardeen’s Theory of the Role of Surface
States in Immobilizing Induced Charge.

random and will be on the average about 500 times as far apart as normal
atoms in the lattice.) In part (b) the net charge density is plotted as a
function of distance below the surface. This charge density gives a
variation of electrostatic potential from point to point in accordance with
the energy curve for an electron shown at (c). The effect of the repulsion
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of the electrons in the surface states and the attraction of the unneutralized
donors are represented by the approximately parabolic curve of energy
versus distance. The surface states bind the electrons tightly in energies
even lower than they would have in the conduction band, deep inside the
crystal. Semiconductors, like metals, have work functions; the energy
required to remove an electron from inside the semiconductor to a point in
free space in front of it is represented by the height of the energy curve
above zero on the left edge of part (c).

It may be helpful at this point to make a few remarks on the relationship
between energy of an electron shown in Figure 2.3 and the electrostatic
potential. One obvious difference is that, because of the negative charge of
the electron, the energy diagram and the electrostatic potential diagrams
are inverted in respect to each other and electrons tend to fall uphill in
an electrostatic potential diagram. A more important difference, especially
when an electron moves near a polarizable surface such as that of a metal,
is that the electron induces charges by its presence and thus changes the
electrostatic potential.’> The energy diagram includes these interactions
so that the energies shown represent the way in which the energy of the
entire system depends on the position of the electron. Not all of the energy
difference between states arise from differences in electrostatic interactions,
however. The change in energy between an electron in the conduction
band and one in a deep lying surface state is in part electrostatic and in
part kinetic. In the hydrogen atom of Figure 1.1, for example, the electron
has a negative potential energy which has twice the magnitude of the
kinetic energy. In general, differences in energy between different elec-
tronic states involve mixtures of kinetic and potential energies and it is
usually not practical or useful to try to sort them out.

When the metal capacitor plate is charged positively, a compensating
negative charge flows through the charging circuit and appears as six extra
electrons on the surface of the semiconductor, in the Surface States Dia-
gram, at (d). Four of these electrons go into the surface states, and two
remain as excess electrons in the conduction band. The resulting modifi-
cations of the space charge distribution (e) and energy for an electron (f)
follow directly from part (d). The electric field between the capacitor
plates is represented in (f) by the slope of the energy curve outside the
semiconductor. The example shown in the Surface States Diagram is, of
course, qualitative, and it is reasonable to suppose that 90 per cent of the
charge goes into the surface states in accordance with the results measured
by Pearson.®

5 See, for example, W. G. Dow, Fundamentals of Electronic Engineering, John Wiley &
Sons, New York, 1937, Section 94.
6 W, Shockley and G. L. Pearson, Phys. Rev. T4, 232-233 (1948),
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A number of experiments have been performed which give information
on various features of the surface state theory just presented.”

2.2 THE TYPE-A TRANSISTOR

2.2a. Tts Discovery and External Aspect. Experimental and theoretical
work on the properties of surface states was given emphasis in the research

Fic. 2-4—Cut-away View of the Type-A Transistor.

Two phosphor bronze wires .5 mils in diameter are pointed, bent and welded to the
nickel mounting wires. The latter are previously molded into a plastic plug, which
makes a light press fit in the mounting cylinder. The germanium wafer 20 mils thick
and 50 mils square is soldered into a brass mounting plug which is also pressed into
the cylinder. After an electrical forming treatment the unit is vacuum impregnated
with wax through the hole in the cylinder. (See Section 4-5 for some information
on forming.)

program at Bell Telephone Laboratories. Stimulated by Bardeen’s theory,
the group undertook a number of experiments to measure characteristics
of the surface states. In many instances the effects sought were below the
threshold of sensitivity of the methods employed. While exploring certain
aspects of this problem, John Bardeen and Walter Brattain encountered

7 For a summary of several experiments, see the original paper by J. Bardeen; Phys. Rev.
71, 717-727 (1947). For information on contact potential see W. H. Brattain and W. Shock-
ley, Phys. Rev. 72, 345 (1947). For photoelectric emission see L. Apker, E. Taft, and
J. Dickey, Phys. Rev. 74, 1462-1474 (1948), which contains many references.
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some new effects, and, branching off into a new area of theory and experi-
ment, they invented the transistor.!

We shall next discuss the transistor from a phenomenological viewpoint
and will present, thereafter, the theory of its operation.

Figure 2.4 shows a cut-away view of a transistor. The schematic
diagram of Figure 2.5 shows the bias battery supplies which activate the
transistor so that it can amplify an input signal. The two point contacts of
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F1c. 2-5—Schematic Diagram of Transistor.

The area of interaction which surrounds the emitter point, the conventional symbols
and the sign conventions for current flow and voltage are shown. (Typical values
for a type-A transistor are I, = 0.6 ma, ¥, = 0.7 volt, I, = —2.0 ma, ¥, = —40
volts.)

the transistor are, individually, rectifying points of the general type dis-
cussed with Figure 2.1. Under operating conditions, the input or emitter
point is operated in the plus (forward or low-resistance) direction and the
output or collector is operated in the minus (reverse or high-resistance)
direction. An important discovery of Bardeen and Brattain was that,
when the input point is biased for forward current flow, it becomes sur-
rounded by an area of interaction; if the output point is placed within this
area, the input current controls the output current in such a way that power
gain results. The region of interaction is not sharply defined, and the power

! For additional details of this history together with a discussion of many theoretical and

experimental aspects of transistors, see J. Bardeen and W. H. Brattain, ‘“Physical Principles
Involved in Transistor Action,” Phys. Rev. 75, 1208-1225 (1949).
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gain in one conventional circuit arrangement varies from about 100-fold
(or 20 db) at 0.005-cm spacing to unity or (0 db or unit power transmission)
at about 0.025 cm.

The theory of transistor action, which follows later in this chapter, is
that the emitter point emits holes into the 7n-type material, which other-
wise would contain only electrons. (A few holes are normally present, see
Chapter 10, but they make a negligible contribution to the conductivity.)
These holes are drawn to the negative collector point and add to its current.
In Section 3.1 we shall describé experiments which are consistent with this
picture and give detailed information about the numbers and behaviors of
the holes. In this section we shall describe the transistor characteristics
and show how they lead to power gain, postponing a further description of
the physical theory of the type-A transistor itself until the simpler cases
have been studied.

2.2b. The Static Characteristics. The transistor, being a three-terminal
device, requires the specification of two voltages and two currents to
describe its operating condition. The conventions selected for this purpose
are those standard for three-terminal networks. As shown in Figure 2.5,
the voltages are considered as positive when positive in respect to the base,
and the currents are considered as positive when they flow from metal
point to semiconductor (that is, when electrons flow from semiconductor
to metal). This situation is more complicated than for a conventional
vacuum-tube triode because for the latter the grid current is usually taken
as zero so that it suffices for its static characteristics to specify the plate
current as a function of plate and grid voltages. In the transistor, values
for both voltages and both currents are significant. There is another
important difference: Fora given set of voltages, there may be two or three
possible sets of currents in the transistor. That is, the currents are multi-
valued functions of the voltages. (The reverse is true in a vacuum tube
suffering from grid emission, and there may be two grid voltages for a given
grid current.) However, for the transistor, there is only one set of voltages
for a given pair of currents in the normal operating range. It is thus
appropriate in the case of the transistor to express the voltages as functions
of the currents.

The symbols chosen for emitter, base and collector are ¢, 4 and ¢. The
choice of e rather than ¢ reduces the likelihood of confusion with ¢ when
subscripts are used, as the reader may verify by considering ¥, ¥ and 7.

Figure 2.6 shows a plot for a typical transistor, for d-c conditions. The
two upper plots show 7, as a function of the currents, two conventions of
presentation being employed, and the lower plots similarly show V.
These particular plots have been chosen for exhibiting transistor char-
acteristics because of the convenient relationship of their slopes to param-
eters in the small signal theory of transistor operation, :
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One extra line is shown in the upper left plot, which corresponds to a
fixed collector voltage of —40 volts. This line has been extended beyond
the range of the operating characteristics. It shows that, at fixed collector
bias, the emitter voltage first increases with emitter current and then,
somewhat beyond the operating range, it decreases. In other words, there
are two sets of values of emitter current and collector current which cor-
respond to ¥, = —40 volts and ¥ = —0.1 volt. In a presentation of the
data in the form of currents as functions of the voltages, this multivalued
feature would cause considerable inconvenience; so far as the operation of
the transistor is concerned, however, the situation is even more serious. If
the transistor were operated at these two voltages, that is, from low-
impedance external sources, it would be conditionally stable at the first
point and unstable at the second. If a transient impulse should happen to
take it out of the stable range, it would tend to run away to currents still
higher than the upper point and a burned-out unit would result. To avoid
such damage, transistor circuits are designed so as to eliminate the insta-
bility in amplifiers and limit the currents in flip-flop circuits and thus to
overcome or to control the instability. In Section 4.1(b) we shall show that
the negative resistance in the input point is associated with a current
amplification between input and output circuits and that the multivalued
aspect of the plots is related to the decrease in the resistance of the rectifiy-
ing emitter contacts as the emitter current increases.

The static characteristic lines are of importance in determining the non-
linear behavier of transistors and in designing switching and counting
circuits using them. Some problems illustrating the principles involved
are given at the end of this chapter.

2.2c. The Equivalent Circuit.? If we write the functional relationship of
Figure 2.6 in the form

Ve=ho 1) (1)

Vz::fZ(Ie)IC)) (lb)

then the small a-c voltages v, and v, produced by small a-c currents i.and
. 3
i, are

af1 . df1. . .

ve = aﬁ i+ —aﬁ ic = rife + rigte (2a)
afa . dfs . . .

Ve = :{;% te+ :9% fo = royie + ragte (2b)

2 General reviews of the theory of networks will be found for passive circuits in E. A,
Guillemin, Communication Networks: Vel. IT, John Wiley & Sons, New York, 1935 and for
active circuits in L. C. Peterson, Bell Syst. Tech. J. 27, 593-622 (1948).

3 In this section we shall assume that the frequency is so low that all circuit parameters ars
resistive.

0



38

TYPE-A TRANSISTOR

0.8
0.8 /4;
. -
-
= 04 ‘O///g,/’//
o S A //; r
o K208 1250
g OAZ—° < >
5 CC / W -
[o] / Q,
> o >,
4 7‘ COLLECTOR
«
w f /)/ =¥ "VoLtac,
r -02 v -40 VOLTS —
b3 / (a)
2 /4
-o.‘
INPUT
-06 CHARACTERISTIC,
-~ SLOPE =1}y
L1
~0.4 o 0.4 08 12 16 20
EMMITTER CURRENT,I,,IN MILLIAMPERES
0
Ic=D // —— o
-5 ,°n / ///
Y / /
-10 7 o / /
/’/ of | o /
~i5 V. Dy Y n/
/ 9
~
O =20 l '/
: L)
[P Iy
9 25 / <
92 -25
3 [
> -30 3,
@
5 [ 1] s
£ -35 &
) “l/
3 7/
O
TV
(€)
-45 Vi
— /
FORWARD
-50 /| cHaracTERISTIC,
/ / / SLOPE=ly¢
-s5 =
-04 ) 0.4 0.8 12 16 20

EMMITTER CURRENT, 1o, IN MILLIAMPERES

Fic. 2-6—Four Sets of Static Characteristics for the Type-A Transistor.

2.2




2.2c}

EMMITTER VOLTAGE, Vg

COLLECTOR VOLTAGE, V¢

THE EQUIVALENT CIRCUIT

0.8
0.6 e —
| e
e
s
R A \S /
02 '/779; //
Q,
o ///// '/
/ 2
-0.2 ,///0 ///
4 o
—04 / Y/
: 7
{b) /
-0.6 FEEDBACK CHARACTERISTIC,
| SLOPE =1y, I i
-0'8—4 -3 ; Y -1 )
COLLECTOR CURRENT, I¢, IN MILLIAMPERES
0
-5 // g/ /
.\‘?‘/ 4 // I
-10 & j?/ / (
~
NS N
WAV A Ak
-20 ,/ 9 :ﬁ'
Z o)
25 / / 10
-30 m, 2
// [/ ///
/
MYy
/
[V (@)
-85 7 OUTPUT CHARACTERISTIC,
lSLOf’E=l'22 |
-4 -3 -2 =1 o

COLLECTOR CURRENT,I~, IN MILLIAMPERES

Fi1c. 2-6—Continued.

39



40 TYPE-A TRANSISTOR [2.2¢

where the #’s, which are abbreviations for the partial derivatives, are
simply the slopes of the curves of Figure 2.6. A system described by the
equations just given can be represented as a passive network of resistances
if 712 = 71 and 711 > r12 < ra; otherwise negative resistances or voltage

€, EMITTER  COLLECTOR,C
O O
B )
lc Ve
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v,
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Te = M~ Mg f =M+ a = Tn/Tz2
T = Te e = 1y Qe = Tm/Tc
r
fo = Tapp~Tp2 Ty = M+ Qe =a+(a-1)—b-rc
m = Ta21- T2 Ta = Ty * I

Fic. 2-7—Equivalent Circuits for the Transistor and Relationships
Among the Parameters.

(Generators inside dashed rectangles are equivalent if rn = ure.)

or current generators must be introduced. Figure 2.7 shows three equiva-
lent circuits together with the relationships between the various parameters
involved.

The quantity o

a]c:l 721
o | —— = — 3
* [615 Ve =const a2 ( )

is a measure of the effect which the hole current from the emitter has upon
the collector. We shall discuss its physical meaning in later sections. The
quantity 71, which represents a reaction at the emitter produced by the
collector, is called the base resistance; it represents a positive feedback in
the grounded base amplifier circuit and, as such, it increases the gain and
decreases the stability of the circuit.

In Figure 2.7(b), the resistance 7y in the voltage generator vni. is the
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active mutual resistance. As we shall see at the end of this section, the
power gain is approximately proportional to 7>

From the static characteristics shown in Figure 2.6, values of the quanti-
ties 711, €tc., can be obtained for any operating point. The following table
gives typical values together with other information on operating con-
ditions.

TagLe 2.1. PreLMINARY Data ror TypPe-A TRANSISTOR

Average Equivalent Circuit

Typical Operating Conditions Parameters (ohms)

Emitter Current.... 0.6 ma riu = 530 | Emitter Resistance 7. = 240
Emitter Voltage. ... . 0.7 volt | riz2 = 290 | Base Resistance rp= 290
Collector Current.... —2 ma ro1 = 34,000 | Collector Resistance 7. = 19,000

Collector Voltage.... —40 volts | ra2 = 19,000 | Mutual Resistance r» = 34,000
Qe = @ = 7‘21/7‘22= 1.8

Maximum Ratings: Not to be exceeded in continuous operation. Voltages relation

to base.

Collector Voltage. ... ...covviiviiiiiiiian —70 volts
Collector Dissipation. .. ...........coiviivienns 0.2 watt
Grounded Base Operation: Class A, working from a 500-ohm generator into a 20,000-

ohm load.
Operating Power Gain................oooiiin ~ 17 db
Power QUEPUL. .. .. v ettt iieae e ~ 5 mw

From this data it is evident that the input impedance is of the order of
hundreds of ohms. From the values of « it is seen that the output current,
in equivalent circuit (c) for example, is even larger than the input current
and is available from an impedance of the order of 20,000 ohms. From this
it is at once evident that there is the possibility of power gain.

The source of the power gain resides in the current or voltage generators
of the equivalent circuits of parts (b) and (c) of Figure 2.7. (Power gain
may occur even if a. is less than unity.) In later sections we shall discuss
the internal mechanism of the transistor and relate the physical picture to
the equivalent circuit so that the mechanism of power gain will be given a
physical interpretation. In this section, however, we shall deal with the
equivalent circuit per s¢ making no use of the underlying physics peculiar
to transistors. The treatment given, however, will reflect an interest in
the later interpretation, and partly for this reason no use will be made of
the specialized techniques of circuit theory. Although much of the discus-
sion of this section can be compactly expressed in terms of results of the
theory of feedback amplifiers, little use of these ideas and terminology is
introduced. On the one hand, the reader familiar with these ideas will
have little difficulty in recasting the discussion in terms of general circuit
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theory and, on the other hand, it would be inappropriate to incorporate a
sufficient discussion of circuit theory to make it of benefit to the reader
primarily concerned with the fundamental mechanisms of semiconductors.
To the latter the circuit characteristics of the transistor are of interest
chiefly as manifestations of more basic processes.

As an example of the use of the equivalent circuit and as a further
exhibition of the behavior of the type-A transistor, we shall carry out
calculations for the transistor as a grounded base amplifier. This is, of
course, only one of a number of the possible circuits in which the transistor
may be used. The grounded base amplifier is shown in Figure 2.8. The
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(a) (b)
Fic. 2-8—The Transistor as a Grounded Base Amplifier.

(a) Working from a signal generator, vy, 7, into a load 7.
(b) Equivalent output circuit.

emitter is connected to an input generator vg, 7y represented by a voltage
generator v, in series with a resistance 7. The output load resistance
is 71. The bias power supplies are not shown. The generator has a
certain power capacity which is defined as its available power. This power
is defined as the maximum power which the generator can deliver and, as
is well known from circuit theory, this power is a maximum when the
generator looks into a matched load. For this case it has the value

v.2/4r, = available power from input generator. 4)

All power gains which we shall discuss will be defined in terms of the ratio
of the output power to the power available from the input generator.

The power gain in the grounded base circuit is obtained by a straight-
forward analysis of the circuit of Figure 2.8. In order to describe the
output from the transistor in terms of an equivalent generator v,y 7y as
shown in part (b), we shall carry out the analysis by writing down expres-
sions for the voltages at terminals e and ¢ rather than by applying Kirchhoff’s
law to the loops. We thus obtain for terminal e:

De = Ug — Tyle (from generator) (5a)

r11ie + riofc (from transistor). (5b)

]

Ve
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Similarly we obtain for terminal ¢:
Ve = —rLic (from load) (6a)
Ve = To1fe + Tagle (from transistor). (6b)

We shall next solve the last equation by expressing i, in terms of v,
Having done this, we shall find that the equation for v, becomes very similar
to the equation for the generator working into € so that we can interpret
the transistor as converting the generator v,, #, into a new generator v,’,
ry. Solving the v, equations for 7, gives

ie= (vg — rigic)/(ri1 + 74)- \ (7)

Inserting this in the last equation gives

_ 712721\ . a1
U = \ o2 — i, + Vg
rit 7y riutry
I} 5
=y, + 7,ic, ®)

the latter form corresponding to replacing the transistor by v,/, r,/, the
change in sign in the 7,7, term as compared to 7,7, in equation (5a) being
due to the current convention (7. is current out of v, 4 and Z. is current
into 7, i,'). Hence we conclude that the equations

/

vy = ray/(r1 + 1) (9a)
ry = rag — rigrai/ (ru + 74) (9b)

describe the transistor as viewed from the load.
The power delivered by the generator into the load is the output current
ic = v,/ (r, + rL) operating into r:

riic = rifo, /(ry + ro)l (10)

The ratio of this power to the available power of vy, 7y is the operating gain:

erg'2 4_r,_,
7 2
(ry + rL)z Ug

47'[,7‘0 [ ra1 ]2 [7'21]2
= = 4 — 11
(rd’ + r)?lry + 1 TIL| A (1

(r1i1 + rg)(ree + 7r1) — 12721 (12)

is the circuit determinant. As the notation G(ry, r1) implies, the operating
gain depends on the external input and output circuits as well as on the
constants of the transistor. The problem of maximizing G(ry, rz) by
proper choices of 7, and 7, will be discussed below. The circuit determi-
nant is an index of the stability of the circuit. If A < 0, the circuit will
spontaneously build up an oscillation even though v, = 0. If A > 0, the

Operating gain = G(ry, rL) =

where

A
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circuit may be stable; however, the value of A given in (12) is the low-
frequency circuit determinant, and its behavior at high frequency is
involved in determining the stability of the circuit; we shall return to this
point briefly below.
Let us next consider the constant of the output generator in terms of the
values of Table 2.1 The ratio of the voltage generators is, approximately,
Ug, Y21 34,000

vg—r11+rg=530+rg= ’

(13)

the approximation corresponding to 7y = 500 ohms, a representative value
for many applications. The ratio v, /v, would be the voltage gain into
an infinite impedance load and would be analogous to the p of a tube. The
value of 7, is influenced by the feedback due to 12 and is

i, [1_ ar1s ]_r [1_1.8x290]
o T mArd 530 + 7,

= ras[l — 0.45] = 10,500 ohms, (14)

i

the last two terms corresponding to 7y = 500 ohms. It is evident that
the effect of positive feedback through the term involving arip acts to
reduce the output generator impedance and thus to increase the power
available from the generator ,/,7,'. In principle the generator impedance
ry can be reduced to zero or made negative by adding an external feed-
back resistance to the base. This reduction is equivalent to increasing
all of the #’s in the equivalent circuit by the added resistance, the con-
tributions being important chiefly for 711 and 712. As soon as r, passes
through zero and becomes negative, the impedance between terminals ¢
and 4, being rerL/ (r,/ + r1), will also become negative, and oscillations
associated with stray capacitances and inductances may occur. This
is an example of instability arising before the low-frequency A vanishes;
A does not vanish untilr,” + 7z, = 0. The problem of finding the optimum
value of the feedback resistance is similar to other problems of feedback
amplifier design.*

Using the value 10,500 for r, found in (14) and the circuit constants for
Grounded Base Operation of Table 2.1 we find from (11) that

Operating gain = 47 or 16.7 db. (14a)

Two other definitions of gain which are frequently referred to are the
available gain and the maximum available gain. The available gain is
found by adjusting 7 so as to maximize G(r,, r1); this adjustment ob-

41, W. Bode, Network Analysis and Feedback Amplifier Design, D. Van Nostrand Co-,
Inc., New York, 1945.
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. . , .
viously corresponds to setting i, = ry and gives

’ Tg ro1 2 . .
Glryyry ) =—5 = available gain. (15)

!
rg Lrin+ 7y
For the values of circuit parameters previously used, its value is

500 34,000
10,500 | 1030

For the 20,000-ochm load resistor of the Table (which gives greater stability
than the value 10,500 which maximizes the operating gain) the value of the
operating gain is less by a factor equal to (11) + (16):

driry 4 X 20,000 X 10,500

rf +ru)? (30,500)?

a loss of only 0.5 db.

The available gain is still a function of the external circuit through 7.
The maximum available gain is obtained by maximizing this available gain.
When this is done, it is found that », as well as rz, is matched to the
transistor, and 7, and 1, have values

2
] = 52 or 17.2 db. (16)

0.9 a7

rg = [(rires — 7‘127“21)7“11/722]% (18a)
ry = [(rurss — 7’127‘21)7‘22/7’11]%- (18b)

If the positive feedback is too great, the foregoing expressions become imag-
inary. The critical condition is

11722 — Tiof21 = Toa(rin — aryg) = 0. (19)

In terms of the matched generator and load the maximum available gain is
given in terms of 7, and r, of (18a) and (18b) as follows:

2
. . . r21
maximum available gain = . 20
& (rin + 7g)(re2 + 71) (20)
Inserting the values from Table 1.3, we obtain
ry = 76 ohms, rr = 2750 ohms 1)

and a maximum available gain of 88 or 19 db. The extra 2 db of gain as
compared to the situation of , = 500 ohms, »;, = 20,000 has been obtained
by reducing the external resistances to such low values that the margin
of stability has been reduced to a dangerous level. It is better, therefore,
to sacrifice some gain for greater stability.

For purposes of discussion in later sections we shall consider the maxi-
mum gain neglecting the feedback term 7y5. Under these conditions, the
values for r; and 71, for the maximum available gain reduce to r1; and rag
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respectively, and the formula for maximum available gain becomes

rar” _ o’rag 22)

dryree 4y

maximum available gain =

since 791 = arge. This formula indicates that large current amplification,
represented by large a, and a large ratio of collector to emitter impedance
both favor gain.

It should be pointed out in closing these remarks on the equivalent circuit
that we have discussed only the “grounded base” application of the trans-
istor. This mode of operation is in a general way analogous to the grounded
grid operation of a vacuum tube; in fact for a =1, the circuit theories
become very similar, at least at low frequencies. Two other arrangements
are the grounded emitter, corresponding to grounded cathode, and the
grounded collector, corresponding to the grounded plate or cathode-fol-
lower circuit. The equivalent circuit of the transistor is, of course, equally
applicable to all of these cases. For further circuit details the reader is
referred to the literature.’

2.2d. Noise. The type-A transistor exhibits noise having the frequency
spectrum associated with contact or current noise. The noise power per
cycle varies inversely with frequency so that the noise per octave is the
same for all octaves, at least over the frequency range for which the equiv-
alent circuit parameters are independent of frequency.

A detailed discussion of noise theory is beyond the scope of the present
treatment.5 We shall, however, discuss how the equivalent circuit may be
modified to include the effect of noise. This can be done by adding two
noise voltage generators of voltage v, and v, into the emitter and collector
branches of the equivalent circuit as shown in Figure 2.9(a).” Typical
values for the noise generators are as follows: the root mean square noise
voltages in a 1 cycle per second band at 1000 cycles per second are

Une = 1 microvolt (23a)

e = 100 microvolts. (23b)

Since the noise power varies as 1/f, the values of v, and o, at another
frequency, f, are (1000/f)*% times their values at 1000 cycles.

In the grounded base amplifier circuit of Figure 2.8, the effect of v, will
be the same as v,; and vy, will simply combine additively with v,/. Hence
the equivalent circuit looking into the transistor from the load will be as

5R. M. Ryder and R. J. Kircher, Bell Syst. Tech. J. 28, 367400 (1949).

8 For a discussion of the theory of noise in crystal rectifiers, see H. C. Torrey and C. A.
Whitmer, Crystal Rectifiers, McGraw.Hill Book Co., New York, 1948, Chapter 6.

71,. C. Peterson, ‘‘Space-Charge and Transit-Time Effects on Signal and Noise in Micro-
wave Tetsodes”, Proc. IRE, November 1947, 1264-1274.
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shown in Figure 2.9(b) with 9,4 given by the equation

721Une
Ung = — + Une
i1t 7

= 33vpe + Une (24)
where we have used the values in Table 2.1 for the circuit constants and
500 ohms for 5. There is evidence that the noise generators v, and Uy
are “correlated” to a certain degree, indicating that for both of them the
noise arises in part from a common source. For our example the contri-
butions of v, and vy, to v,, are respectively 100 and 33 microvolts. If

(v) —> (V) > (V) =—>

o~ (e

M1 22

(1) (1)

bo— -ob
(@)

F1c. 2-9-—Noise in Transistors.

(a) Noise generators in the equivalent circuit.
(b) Equivalent output circuit.

they were perfectly correlated constructively, the contribution would be -
133 as compared to 67 for perfect negative correlation, a difference of 6 db
in vn,. The correlation coefficient € of two sources is defined for our
example by the equation

Una2 = (33)207&52 + ”ncz + 2 X 330 v vnezvﬂcz‘ (25)
Correlation coefficients ranging from —0.8 to -+0.4 have been observed
for type-A transistors.

If correlation effects are neglected, the mean square noise voltage in
frequency range from f; to f will be®

Ong” (f1, f2) = (11000, 2 4 0,,.°)1000 In, fo/f. (26)
Over the range of 1000 to 10,000 cycles this formula gives
Ung?(10) = (0.25 4 2.3) X 107% volts® = 2.5 X 1078 volts?  (27)

8 The contribution of tne to 2,,% can be obtained by summing the contributions from each
frequency band df, thus obtaining

Sz
f tne? (1000/ /) f = 0021000 Ins (fa/ £).
fu
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corresponding to an r.m.s. value of 5 millivolts. The quantity (10) in
vns° (10) indicates that a frequency band one decade wide is involved. It
is a characteristic of the 1/f power spectrum that the noise power depends
only on the ratio f2/f1 and not on the location of either frequency alone.

It is instructive to compare this with the value of v,” when the maximum
of 5 mw of undistorted power is being delivered to the rz of 20,000 ohms.
This comparison leads to a determination of v," as follows:

v, °rL, v,/%20,000

5% 1078 = =
X (o +75)°  (30,500)2

giving
v,2 = 230 volts? (28)

corresponding to an r.m.s. voltage of 15 volts or about % the bias voltage on
the collector. The ratio of this (voltage)? to the (noise voltage)? is
9.2 X 10%, or 70 db. 'This figure is the most significant figure of merit for
repeater applications, and we shall refer to it as the gain range decade
Sfigure. 1t may also be defined as the “signal to noise ratio at maximum
output for a frequency band one decade wide”. For our example, output
signals greater than 15 r.m.s. volts will produce distortion, and output
signals less than 5 r.m.s. millivolts will be no larger than noise. Usable
output signals will, therefore, lie in a range about 70 db wide, the exact
value being set by the tolerance limits on signal-to-noise ratio and dis-
tortion.

The value of 70 db corresponds to a band one decade wide. For a wider
band, there will be more noise power, and the gain range figure for the
wider band will be smaller. For example, the band from 100 to 10,000
cycles per second is two decades wide and has 3 db more noise so that the
gain range figure is 67 db. The gain range figure for any band may be
obtained by computing 10 times the logarithm to the base 10 of the number
of decades in the band and subtracting this from the gain range decade
figure. As another example consider the band from 5 to 6 mc. This
contains log & = log 1.2 = 0.080 decades. The gain range for this band
would thus be 70 — 10 log 0.080 = 70 — 10(—1.1) = 81 db.

The gain range figure is obviously closely related to the permissible
attenuation between repeaters. If the attenuation exceeds the gain range
figure, then either the output of one repeater is overloaded or the first stage
of the next repeater will have a signal output smaller than noise, it being
assumed that the problems of impedance matching have been solved. In
an actual design problem the considerations would include impedance
matching, tolerances for distortion and signal-to-noise ratio, and the total
number of repeaters in tandem.

Another quantity frequently used to describe noise is the noise figure.
This is defined in terms of an amplifying circuit, like that of Figure 2.8, for
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example, as follows: If the only source of noise were the thermal or Johnson
noise in the external generator resistance, which we represent by 7y, a7
(T for thermal), then a certain apparent noise generator o7’ would appear
in the output. The ratio of (v,,)® actually observed in the output to
(va7")? is the noise figure. The value of the noise figure depends on the
particular circuit constants used in the generator and has a minimum value
for a certain choice. We shall not give the theory of making this choice
but will consider the general expression for the noise figure and then com-
pute it for the previously discussed case in which 7, = 500 ohms. The
formula for the thermal noise voltage at room temperature (kT/¢ = 0.025
volt) is as follows:

var® = 4rgkTAf = ry(4kT/e) (eAf)
r4(0.1 volt) (1.6 X 1071%Af amp)
= 1.6 X 1072%, (chms) Af (sec™?) volts®. (29)

|

il

Combining this with the expression for voltage gain and with the formula
for the output generator due to v, and v, leads to the expression for the
total output noise generator:

2
ns? (fir f2) = [ﬁr—] Sk T(fo — )

{2 ]@] 1000 In, (fo/fy) ~ (30)

711+ 7g
and to a noise figure

1+ 7y

m[vmz@[ o ]zvncz] 1000 In, (f2/f).  (31)

where the @ sign indicates that correlation is to be taken into account in
combining the terms. Rather than substituting directly in the formula,
we shall deal with the case of f; = 1000 and f» = 10,000 cycles/sec dis-
cussed earlier using 7, = 500 ohms. For this band, va7® is 1.6 X 1072% X
500 X 9,000 volts® and contributes 33 times this amount to Ung’ OF
8 X 107! volts?. The value 2.5 X 107 volts? due to the transistor is
larger than this by a factor of 3 X 10° or 55 db and (because of the large
ratio) this is also the noise figure.

A noise figure of 55 db for the 1000 to 10,000 cycle band is much worse
than that of a good electron tube, which can come close to 0 db. In view
of the frequency dependence which brings the transistor noise figure down
to 30 db at a megacycle, the comparison at video frequencies is less un-
favorable, particularly if some developmental improvement can be made.

The noise figure depends upon the circuit used as well as on all the circuit

F=1+
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parameters. For further information, the reader is referred to the liter-
ature.?

The noise figure is evidently an index of the amount by which the
transistor falls short of being a noiseless amplifier. It is evident that no
appreciable advantage will be achieved by lowering the noise added by
the transistor lower than say 3 db below that contributed by the generator.
Since the noise generator in the equivalent circuit is much larger than
thermal noise in the corresponding resistive components of the equivalent
circuit (and also much larger than shot noise), there appears to be no basic
physical principle which will prevent lowering the noise in transistors
greatly.

ProBLEMS

1. Consider the circuit in which the emitter of the transistor is grounded
and the input signal is applied to the base from an input generator r,, v,
and the output is delivered to a load r1. Show that the characteristics of
this amplifier are as follows:

Circuit determinant:
A= (rg+r +rorL Fret re — rm) + re(tm — 7e)
> 0 for stability

. re(rm - re)
Input impedance = 7y, = rp + 7 +
put 1mp " it retre—rm
re(rm - re)

Output impedance = rout = 7o + e = m +

rg + "p + Ve
Operating gain = Gp = 4rgri[(rm — 7<)/ AF
Backward operating gain = Gg = 4r,L(r./A)?

Show that for the transistor of Table 2.1, 7, = 500 ohms and r = 20,000
ohms that 7y, = 2100 ohms, 7ot = —6900 chms, Gp = 24 db, G = —19db.

2. Consider the grounded collector amplifier as for problem 1 and show
that the equations determining its behavior are as follows:

Circuit determinant: .
A= (rg+rtr)re+retre—rn) + r(tm — 1)
>0 for stability

. rc(rm - rc)
Input impedance = 7, = 7, + 7. +
put imp " Clrndretre—rm
rc(rm - rc)

Output impedance = fout = e + 7 — m +

rgt+ 1o+ 7.
Operating gain (forward) = Gp = 4rr(re/A)?
Backward operating gain = G = 4ryri[(rm — 70)/AF = (1 — a)?Gp
9See R. M. Ryder and R. J. Kircher, Bel! Syst. Tech. ]. 28, 367400 (1949). Formulae
for several cases are quoted.
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Show that for the transistor of Table 2.1, 7, = 20,000 ohms, and rg =
10,000 ohms that i, = —41,000 ohms, 7oyt = —7500 ohms, G = 15 db,
Gg = 13 db.

Remark: The following problems are intended to give the reader some
familiarity with the magnitudes of voltages and currents and with the non-
linear behavior of the transistor of Figure 2.6.

3. Construct a plot of emitter voltage versus emitter current for V, =
—10, —20 and —30 volts with the base grounded. (Hins: For fixed
values of 7, read pairs of values of I, and [, from Figure 2.6 and plot in
the 711 subplot.) Verify that near 7. = +1.0 ma the input resistance is
about 80 ohms.

4. Construct a plot, similar to problem 3, of V. versus I, but assuming
that 7, is biased from a —60 volt battery through 20,000 ohms. (Hint:
Draw a load line on the 725 subplot and proceed as for problem 3.) Verify
that for I. in the range 0.5 to 1.5 ma the input impedance is about 300
ohms. (This problem shows that adding resistance in the collector cir-
cuit increases the input impedance of the emitter.)

5. This problem is intended to show how adding resistance between
base and ground can lead to a reduction in input impedance from positive
to negative values. For this purpose consider the /. = —20 volt curve
of problem 3. Verify that as I increases from 0.5 to 1.0 ma, I, changes
from —1.8 to —2.7 ma so that [, = — ([ + I,) changes from +1.3 to
41.7 ma. Next suppose that a resistance is inserted between the base
and ground and let 73’ equal the voltage between base and ground and
V! = vV.+ 7y and ¥, = V. + V' be corresponding emitter and col-
lector voltages above ground. Conclude that if the inserted resistance is
500 ohms, the increase of I, from 0.5 to 1.0 ma will produce a negative
change in 7, given by 500 X (1.7 — 1.3) X 107 = 0.2 volts and hence
that 7./ will decrease so that the input impedance is negative and equal
to about —300 ochms. (The small correction due to the effect of V' on V',
is negligible in this example.)

6. Consider the ¥, versus I, plot for a circuit in which the collector is
biased at —40 volts and the base is connected to ground through 10,000
ohms. For I, = 0, show that I, = —1.0 ma and V' = —10 volts and
V! =V + V.= —10+ (=0.3) = —10.3 volts. For negative emitter
currents, large negative emitter voltages will result. The other operating
points are found by the following graphical construction on the 7g; plot:
For each value of I, the equation

—40 volts = 10,000(15 + Ic) + Vc(Ie)Ic):

must hold; this equation states that the battery voltage must equal the
sum of the drop across the resistance plus the drop between base and
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collector. The equation may be rewritten as
Ve (Ie1.) = [—40 volts — 10,0007,] — 10,0007..

For a fixed value of 7., the left side is simply one of the parametric curves
of the rg; plot. For the same value of I, the right side is simply a straight
line of slope —10,000 ohms on the 7y plot. Thus for each value of 7,
the solution is given by the point of intersection of the straight line with
the parametric curve. Verify that the following points will be obtained.

I, I, Iy vV, 4% v,

-1 0 1 ma —30 —-10 —10.3 volts
-2 0.5 1.5 ma -~25 —15 —14.9 volts
-3 +1.2 1.8 ma -22 —~18 —17.8 volts

The small difference between 73’ and 7.’ is due to ¥.. Estimate that the
negative resistance of ¥, versus I, will continue with a slope of about
— 6000 ohms until #3/ approaches —35 volts, corresponding to the bunched
curves near the top of the ry; plot extrapolated to about I, = 3.5 ma and
I, = —7 ma. For higher values of 7, I, will increase only slowly, ¥, will
change little and a positive resistance will be produced at the input.
This shows that the »°./, I, plot is an N-shaped curve so that for a range of
fixed emitter biases there will be two stable solutions and one unstable
solution. This feature can be used to make flip flop circuits by biasing the
emitter to a negative voltage through a suitable resistor. (This treatment
is due to B. G. Farley.)

7. (a) A grounded base transistor amplifier is coupled through a trans-
former to a generator v, of internal resistance r;. Show that if emitter
noise is neglected, the greatest signal to noise ratio in the load is obtained
when the transformer impedance ratio is 74 3 7.

(b) Suppose that the generator is a typical moving coil microphone for
which 7, = 22 ohms and that when the microphone is picking up speech
from a distance of 3 feet, v = 5 X 107° volt. Show that when proper
matching is used the signal to noise ratio in the load is approximately
0.6 db. Assume a band extending from 50 to 10,000 cps.

(c) Show by a qualitative argument that the final signal to noise ratio
is not much different when the amplifier contains several stages provided
the gain per stage is of the order of 20 db.

8. In view of the results of problem 7, how much gain can be built into
a transistor amplifier designed for the frequency range 50-10,000 cps if it is
required that the noise at the output must be 40 db below the maximum
signal output? Assume that max. signal output is 10 milliwatts.

Ans. Approximately 46 db.

9. Consider a transistor operated as a grounded base amplifier with a
load of 10,000 ohms in series with a 40 volt battery.
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(a) Using the curves of Figure 2.6, find the maximum peak-to-peak
output current which is comparatively free from distortion.

(b) Assuming that the input (emitter) current is sinusoidal, what is the
d.c. emitter bias?

(c¢) If the a.c. component of the input is removed, what is the power
dissipation in the collector? What is the power drawn from the battery?

(d) Let the a.c. component of the input be restored but in such a way
that, unlike (b), the output current is sinusoidal with the maximum peak to
peak amplitude. What is the a.c. power delivered to the load?

(e) Under the conditions in (d), what are the collector dissipation and
the power drawn from the battery?

Ans. (a), 2.2 ma.; (b), .75 ma.; (c), 39.6 mw.; 88 mw.; (d), 6.1 mw.;
(e), 33.9 mw., 80 mw.

10. Show by procedures similar to thosz of problem 7 that the signal
to noise ratio for optimum matching is not affected by connecting several
similar transistors in parallel; in other words, the noise figure of a matched
transistor amplifier is unchanged by paralleling similar transistors.



CHAPTER 3

QUANTITATIVE STUDIES OF INJECTION
OF HOLES AND ELECTRONS

3.1 CARRIER INJECTION IN GERMANIUM*

3.1a. Introduction. The invention of the transistor!'?3 has given great
stimulus to research on the interaction of holes and electrons in semicon-
ductors. The techniques discussed in this section for investigating the
behavior of holes in z-type germanium were devised in part to aid in
analyzing the emitter current in transistors. The early experiments of
Bardeen and Brattain suggested that the hole flow from the emitter to the
collector took place in a surface Jayer.!'> The possibility that transistors
could also be produced by hole flow directly through n-type material was
proposed in connection with the p-n-p transistor.? Quite independently,
J. N. Shive® obtained evidence for hole flow through the body of n-type
germanium by making a transistor with points on opposite sides of a thin
germanium specimen. Such hole flow is also involved in the coaxial trans-
istor of W. E. Kock and R. L. Wallace.8 Further evidence for hole injec-
tion into the body of #-type germanium under conditions of high fields was
obtained by E. J. Ryder.”

In keeping with these facts it is concluded® that with two points close
together on a plane surface, as in the type-A transistor,® holes may flow
either in a surface layer or through the body of the germanium. For sur-
face flow to be large, special surface treatments appear to be necessary;
such treatments were not employed in the experiments described in this
section and the results are consistent with the interpretation that the hole
current from the emitter point flows in the interior.

* This section appeared in slightly modified form as a part of a paper by W. Shockley,
G. L. Pearson, and J. R. Haynes in the Bell Syst. Tech. J., 28, 344-365 (1949).

17, Bardeen and W. H. Brattain, Phys. Rev. 74, 230-231 (1948).

2'W. H. Brattain and J. Bardeen, Phys. Rev. 74, 231-232 (1948).

3 7. Bardeen and W. H. Brattain, Phys. Rev. 75, 1208-1225 (1949).

4 W. Shockley, Bell Syst. Tech. J., 28, 453-489 (1949).

5 J. N. Shive, Phys. Rev. 75, 689-690 (1949).

6 W. E. Kock and R. L. Wallace, Electrical Engineering, 68, 222-223 (1949).

TE. J. Ryder and W. Shockley, Phys. Rev. 75, 310 (1949).

8 For reviews of the type-A transistor see Bardeen and Brattain, Phys. Rev. 75, 1208-1225
(1949); R. M. Ryder, Bell Laboratories Record, 27, 89-93 (March, 1949); J. A. Becker and
J. N. Shive, Electrical Engineering, 68,215-221 (1949); and R. M. Ryder, Bell Syst. Tech. .,
28, 367400 (1949).
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The experiments described in this section, in addition to any practical
implications, serve to put the action of emitter points on a quantitative
basis and to open up a new area of research on conduction processes in
semiconductors. It is worth while at the outset to contrast some of the
new aspects of these experiments with the earlier experimental status of the
bulk properties of semiconductors. Prior to the invention of the transistor,
inferences about the behaviors of holes and electrons were made from
measurements of conductivity and Hall effect. For both of these effects,
under essentially steady state conditions, measurements were made of such
quantities as lengths, currents, voltages, and magnetic fields. The meas-
urement of time was not involved, except indirectly in the calibration of the
instruments. Nevertheless, on the basis of these data, definite mental
pictures were formed of the motions of holes and electrons describing in
particular their drift velocity in electric fields and the transverse thrust
exerted upon them by magnetic fields.® The new experiments show that
something actually does drift in the semiconductor with the predicted drift
velocity and does behave as though it had a plus or minus charge, just as
expected for holes and electrons. In addition, experiments described in
Section 3.2 show that the effect of sidewise thrust by a magnetic field ac-
tually is observed in terms of the concentration of holes and electrons near
one side of a filament of germanium.

We shall discuss here evidence that holes are actually introduced into
n-type germanium by the forward current of an emitter point and show how
the numbers and lifetimes of the holes can be inferred from the data. We
shall refer to this important process as hole injection. Discussions of
the reasons why an emitter should inject holes have been given for metal-
semiconductor point contacts by Bardeen and Brattain and for p-# junc-
tions by Shockley. These theories are discussed in subsequent sections.
There are other possible ways in which semiconductor amplifiers can be
made without the use of hole injection into n-type material or electron
injection into p-type material.’® In this chapter, however, our remarks
will be restricted to semiconductors which have only one type of carrier
present in appreciable proportions under conditions of thermal equilibrium;
for such cases the theoretical considerations are simplified and are appar-
ently in good agreement with the experiments.

3.1b. Measurement of Density and Current of Injected Carriers. The
experiment in its semiquantitative form is relatively simple and is shown

9 In the sense of Chapter 14, these pictures amount to additional physical concepts which
enter the theory but drop out again before Hall effect and conductivity predictions are made.
The new experiments bear on other aspects of the physical concepts and give an operational
reality to the pictures associated with drift velocity and Hall effect.

10 For example see J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230-231 (1948), and
W. Shaoekiey and G. L. Pearson, Phys. Rev. 74, 232-233 (1948).
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in Figure 3.1.1' A rod of #-type germanium is subjected to a longitudinal
electric field E applied by a battery Bi. Collector and emitter point
contacts are made to the germanium with the aid of a micromanipulator.
The collector point is biased like a collector in a type-A transistor by the
battery Bo, and the signal obtained across the load resistor R is applied to
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Fic. 3-1—Experiment to Investigate the Behavior of Holes
Injected into 7-Type Germanium.

(a) Experimental arrangement.
(b) Signal on oscilloscope showing delay in hole arrival at # in respect to closing §
at 4 and delay in hole departure at # in respect to opening § at f3.

the input of an oscilloscope. At time #; the switch in the emitter circuit is
closed so that a forward current, produced by the battery Bs, flows through
the emitter point. At # the switch is opened. The voltage wave at the
collector, as observed on the oscilloscope, has the wave form shown in
part (b) of the figure.

These data are interpreted as follows: When the emitter circuit is closed,
the electrons in the emitter wire start to flow away from the germanium
(that is, positive current flows into the germanium). These electrons are
furnished by an electron flow in the germanium towards the point of con-

1l Experiments of this sort were first reported by J. R. Haynes and W. Shockley, Phys.
Rev. 758, 691 (1949).
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tact. The flow in the germanium may be either by the excess electron
process or by the hole process. In Figure 3.2 we illustrate these two possi-
bilities. At first glance it might appear that the difference between these
two processes is unimportant since the net result in both cases is a transfer
of electrons from the germanium to the emitter point., There is, however,
an important difference, one which makes several forms of transistor action
possible. In the case of the hole process an electron is transferred from the

METAL SEMICONDUCTOR
ELECTRON METAL -
GAS IC;NS MOTIION OF EXCESS ELECTRON

t
MOTION OF HOLE
—

F16. 3-2—Comparison between Electron Flow to and Hole Flow from a Point Contact.

valence band structure to the metal. After this the hole moves deeper into
the germanium. As a result the electronic structure of the germanium is
modified in the neighborhood of the emitter point by the presence of the
injected holes.

Under the influence of the electric field E, the injected holes drift toward
the collector point with velocity u,E, where p, is the mobility of a hole, and
thus traverse the distance L to the collector point in a time L/pp,E. When
they arrive at the collector point, they increase its reverse current and pro-
duce the signal shown at f.

There are two important differences between the signal produced at %
and that produced at #;. The signal at #, which is in a sense a pickup sig-
nal, would be produced even if no hole injection occurred. We shall
illustrate this by considering the case of a piece of ohmic material sub-
stituted for the germanium. Conventional circuit theory applies to such a
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case; however, in order to contrast this purely ohmic case with that of hole
injection, we shall also give a description of the conventional theory of
signal transmission in terms of the motion of the carriers. According to
conventional circuit theory, the addition of the current I would simply
produce an added IR drop due to current flow in the segment of the speci-
men to the right of the collector. This voltage drop is denoted as I LRain
part (b), Ra representing the proper combination of resistances to take into
account the way in which I divides in the two branches. This signal will
be transmitted from the emitter to the collector with practically the speed
of light—the ordinary theory of signal transmission along a conductor
being applicable to it. This high speed of transmission does not, of course,
imply a correspondingly high velocity of motion of the current carriers. In
fact, the rapidity of signal transmission has nothing to do with the speed of
the carriers and comes about as follows: If the ohmic material is an elec-
tronic conductor, then the withdrawal of a few electrons by the emitter
current produces a local positive charge. ~This positive charge produces
an electric field which progresses with the speed of light and exerts a force
on adjacent electrons so that they move in to neutralize the space charge.
The net result is that electrons in all parts of the specimen start to drift
practically instantaneously. They flow into the specimen from the end
terminals to replace the electrons flowing out at the emitter point and no
appreciable change in density of electrons occurs anywhere within the
specimen.

The distinction between the process just described and that occurring
when holes are injected into germanium is of great importance in under-
standing many effects connected with transistor action. One way of sum-
marizing the situation is as follows: In a sample having carriers of one type
only, electrons for example, it is impossible to alter the density of carriers
by trying to inject or extract carriers of the same type. The reason is, as
described above (or proved in the footnote), that such changes would be
accompanied by an unbalanced space charge in the sample and such an
unbalance is self-annihilating and does not occur,!?

When holes are injected into 7-type germanium, they also tend to set
up a space charge. Once more this space charge is quickly neutralized by an
electron flow. In this case, however, the neutralized state is not the normal
thermal equilibrium state. Instead the number of current carriers present

12 This is a description in words of the result ordinarily expressed in terms of the dielectric
relaxation time obtained as follows: V-I=—p, I =0¢E=—0oV¥, Vi = —4mp/xk =
p/e so that p = po €Xp [— (4o /x)t], where I = current density, p = charge density, ¢ =
conductivity, E = electric field, ¥ = electrostatic potential, x = dielectric constant. The
quantity «/4ma is the dielectric relaxation time.

13 In the case of modulation of conductivity by surface charges discussed in Section 2.1,
a net charge is produced by the field from the capacitor plate. The changed charge density
extends slightly into the specimen but should not be confused with the true volume effect of
hole injection. Such space charge layers are discussed briefly in Section 4.3.
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has been increased by the injected holes and by an equal number of electrons
drawn in to neutralize the holes. The total number of electrons in the
specimen will thus be increased, the extra electrons coming in from the
metal terminals which complete the circuit with the emitter point. The
presence of the holes and the neutralizing electrons near the emitter point
modify the conductivity. As we shall show below, this modification of
conductivity may be so great that it can be used to measure hole densities
and also to give power gain in modified forms of the transistor. We shall
summarize this situation as follows: In a semiconductor containing sub-
stantially only one type of current carrier, it is impossible to increase the total
carrier concentration by injecting carrviers of the same Lype; however, such
increases can be produced by injecting the opposite type since the space charge
of the latter can be neutralized by an increased concentration of the type normally
present,

Thus we conclude that the existence of two processes of electronic conduction
in semiconductors, corresponding respectively to positive and negative mobile
charges, is a major feature in several forms of transistor action.

In a vacuum-tube triode there are also two ways in which electrons
carry current: (1) ordinary metallic conduction in the leads and (2) space
flow produced by thermionic emission. In Section 4.2 we shall show, by
comparing a p-n-p transistor with a vacuum-tube triode, that there is a
close analogy in the two cases between the ways in which the interaction
of one form of current flow with the other produces amplification.

In terms of the description given, the experiment of Figure 3.1 is readily
interpreted. The instantaneous rise at # is simply the ohmic contribution
due to the changing total currents in the right branch when the emitter
current starts to flow.  After this, there is a time lag until the holes injected
into the germanium drift down the specimen and arrive at the collector.
When the current is turned off at 73, a similar sequence of events occurs.

The measured values of the time lag of #; — #3, the field E, and the dis-
tance L can be used to determine the mobility of the holes. The fact that
holes, rather than electrons, are involved is at once evident from the polarity
of the effect; the disturbance produced by the emitter point flows in the
direction of E, as if it were due to positive charges; if the electric field 1s re-
versed, the signal produced at #3 is entirely lacking. The values obtained
by this means are found to be in good agreement with those predicted from
the Hall effect and conductivity data. The Hall mobility values obtained

on single crystal filaments of #- and p-type germanium®* are
pp = 1700 cm/sec per volt/cm 1)
pn = 2600 cm/sec per volt/cm. (2)

The agreement between Hall effect mobility and drift mobility, as was
pointed out at the beginning of thissection, is a very gratifying confirmation
1 G, L. Pearson, Phys. Rev. 76, 179 (1949).

P
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of the general theoretical picture of holes drifting in the direction of the
electric field.’®

We shall next consider a more quantitative embodiment of the experi-
ment just considered. In Figure 3.3, we show the experimental arrange-
ment. In this case it is essential in order to obtain large effects that the
cross section of the germanium filament be small. A thin piece of germa-
nium is cemented to a glass backing plate and is then ground to the desired
thickness. After this the undesired portions are removed by sandblasting
while the desired portions are protected by suitable jigs consisting of wires,
Scotch tape, metal plates, etc. After the sandblasting, the surface of the
germanium is etched. In this way specimens smaller than 0.01 X 0.01 cm
in cross section have been produced. The ends of the filament are usually
made very wide so as to simplify the problem of making contacts.

Under experimental conditions, a battery like By, of Figure 3.1, applies a
“sweeping” field in the filament so that any holes injected by the emitter
current are swept along the filament from left to right. In the small fila-
ments used for these experiments, the resulting concentration of holes is so
high that large changes in conductivity are produced to the right of the
emitter point and, as we shall describe below, these changes can be measured
and the results used to determine the hole current at the emitter point. In
order to treat this situation quantitatively, we introduce a quantity v de-
fined as follows:

v = the fraction of the emitter current carried by holes. 3)

Accordingly, a current v/ of holes flows to the right from € and produces a
hole density, denoted by p, which is neutralized by an equal added electron
density. A fraction (1 — ¥)I. of electrons flows to the left; these electrons
do not, however, produce any increased electron density to the left of the
emitter since they are of the sign normally present in the #-type material.
The presence of the holes to the right in the filament increases the con-
ductivity o [as shown in Figure 3.3(c)] both because of their own presenceand
the presence of the added electrons drawn in to neutralize the space charge
of the holes. 'The mobility of electrons is greater than the mobility of holes,
the ratio being'®

b = pn/up = 1.5 for germanium 4)

and the electrons are always more numerous than the holes'?
n = ny -+ p, (5 )18

16 See Chapter 12 for a review of the most recent data.

16 G. L. Pearson, Phys. Rev. 76, 179 (1949). See Chapter 12 for the most recent data.

17 The notation used in the equations is as follows: #, p, 79 = respectively density of
electrons, of holes, of electrons when no holes are injected. Ny and Ng are the densities of
donors and acceptors, assumed ionized so that #p = Ng ~ Na. I, Iy, I. are as shown on
Figure 3.3. (. used for the probe collector in Figures 3.1 and 3.9 does not enter the
equations.)

18 Gee Problems at the end of this chapter.
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Fic. 3-3—Method of Measuring Hole Densities and Hole Currents.

(a) Distribution of holes, electrons, and donors. Acceptors, which may be present,
are omitted for simplicity, the excess of donor density Ny over acceptor density N,
being #0.

(b) To the right of the emitter the added hole density p is compensated by an
equal increase in electron density.

(c) The conductivity is the sum of hole and electron conductivities.

(d) The total current I, + I, to the right of the emitter is carried by I, and I,
in the ratio of the hole to the electron conductivity.
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where 7, is the concentration of electrons which would be present to neu-
tralize the donors if p were equal tozero; consequently, the current carried
by electrons is greater than the current carried by holes. The concenfration
of holes diminishes to the right due to the fact that holes may recombine
with electrons as they flow along the filament.

From this experiment the value of v and the lifetime of a hole in the
filament can be determined. The measurements are made with the aid of
the two probe points Py and Pg, which draw no current and serve simply to
measure the potential'® on the two equi-potential surfaces 7 and . The
conductance of the segment of filament between these equi-potentials is
obtained by measuring the voltage difference and dividing it into the
current Iy + I.. The conductance of the filament befween these points
is obtained by measuring the voltage difference A¥ and dividing it into the
current Iy + I.. The necessary formulae for calculating hole density and
hole current, shown on the figure, are derived as follows:

Normal conductivity go = éua?g, (6)

conductivity with holes present o = ep.2 + enpp

= eun(no + p) + eupp = coll + A1+ 7)(p/n)l.  (7)

This relationship is plotted in part (a) of Figure 3.4 as a function of p/7o.
The conductance,

G =+ 1I,)/AV, (8)
between P, and P, is proportional to the local conductivity, and hence to
1+ A+ 67 (p/n0), 9)

so that a measurement of the conductance gives a measurement of p/#.
Letting G and G be the conductances between the points with and without
hole injection, we have

G o

GO o0

=14 (1 + &) (p/m0) (10)

or

p  o—a  (G/G)—1

N N

(11)

The ratio of the hole current to the total current is, of course, simply the
ratio of the hole conductancetototal conductance. Thisratio, Ip/(In+ Ip),

19 When the hole and electron densities in a semiconductor do not have their equilibrium
values, the potential measured by a point contact will depend on the nature of the contact,
the situation being remotely analogous to that corresponding to thermoelectric potentials.
These internal contact potential differences are usually so small that they can be neglected for
experiments of the sort described here.  For a further discussion of the theory see W. Shockley,
Bell Syst. Tech. ]. 28, 435-489 (1949).
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is plotted in part (b) of Figure 3.4. The value of I, may then be deter-
mined graphically as follows: From a measurement of G/Goy, p/ng is de-
termined from part (a); from p/ng, the ratio I,/(In + I,,) is then found
from (b). Since I, + I, is known, this determines I,. The algebraic
relationship corresponding to the procedure just outlined is as follows:

Ip - eupp _ p
In+ 1,  epan + eupp  bno+ (14 0)p
= p/n0 _ 1 — (Go/G) (12)
bl + (1 + 674 (p/m0)] 144
I (@) o
© 5 . 0.l 2} = LmTiING vaLUE
b Za
: L5 )T Lo
S (e+ i), Sq 1
o b 28 oo
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Fic. 3-4—Dependence of Conductivity and Fraction of Current Carried by Holes
Upon Hole Concentration. (Drawn for 4 = 1.5.)

Hence from the measured values of G, it is possible to obtain the fraction
of the current carried by holes. The hole current flowing past the probe
points can be obtained by multiplying this expression by I + Iy = I, +
I,; this leads to the formula

_ o+ W1 = Go/G)] _ T+ I = GodV

L 142 1+4

(13)

where AV is given by (8). This last expression can be given the following
simple interpretation. GpA¥ is the current carried by the normal electron
density 7o. The numerator of (13) is thus the extra current carried by
injected holes and added electrons, and of this extra current a fraction
1/(1 4 &) is carried by holes so that the hole current is given by (13).20

If there were no decay, the current past the probe points would be v/
and, since I is known, v could be easily determined. Actually, however,

20 I these calculations the formula # = p + ny, corresponding to completely ionized
donors and acceptors, has been used. In germanium this is a good approximation. For
silicon, however, modifications will be necessary.
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there may be quite an appreciable decay. However, if the current Iy is
increased, the holes will be swept more rapidly from the emitter to the
probes and less decay will result. Thus by increasing Ip, the effect of
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recombination can be minimized and the value of hole current can be
extrapolated to the value it would have in the absence of decay. This
value is, of course, ¥1 .

In Figure 3.5 we show some plots of this sort. The ordinate is I,/
which should approach v as the value of I, becomes larger. The theory
indicates that a logarithmic plot should be used and that the abscissa
should be made proportional to transit time so that the case of no decay
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or zero transit time comes at the left edge.? The conclusion reached from

this plot is that, for the case of the n-type sample, the value of v is sub-
stantially unity, all the emitter current is holes. For the opposite case in
which electrons are injected into p-type material,?® the corresponding value
of I,/I. extrapolates to 0.6 indicating that for this case 60 per cent of the
current is carried by electrons and 40 per cent by holes. For these partic-
ular specimens the lifetimes are found to be 0.9 and 0.41 microsecond
respectively. There is a body of evidence, some of which we discuss below,
that holes combine with electrons chiefly on the surface of the filament.

3.1c. Influence of Hole Density on Point Contacts. The presence of
holes near a collector point causes an increase in its reverse current; in
fact the amplification in a type-A transistor is due to the modulation of the
collector current by the holes in the emitter current. The influence of
hole density upon collector current has been studied in connection with
experiments similar to those of Figure 3.3. After the hole current and the
hole density are measured, a reverse bias of 20 to 40 volts is applied. The
reverse current is found to be a linear function of the hole density. Figure
3.6 shows typical plots of such data. Different collector points, as shown,
have quite different resistances. However, once data like that of Figure
3.6 have been obtained for a given point, the currents can then be used as a
measure of hole density. This experimental procedure for determining hole
density is simpler than that involved in using the two points and much
better adapted to studies of transient phenomena. It is necessary in em-
ploying this technique to keep the current drawn by the collector point
somewhat smaller than I, + 7,; otherwise the disturbance in the current
flow due to the collector current is too great and the sample of the hole
current is not representative. Experiments have shown, however, that this
condition is readily achieved and that the collector current may be satis-
factorily used as a measure of hole density.

The hole density also affects the resistance of a point at low voltage.
Studies of this effect have also been made in connection with the experi-
ment of Figure 3.3. After the hole density has been determined from
measurements of AV and [, 4+ /, a small additional voltage (0.015 volts)
was applied between P; and P; and the current flowing externally between
P, and P, was measured. From these data a differential conductance, for
small currents, is obtained for the two points P; and Ps in series. As is

2L If the lifetime of a hole is 7, then the hole current at the points is [, = vl exp (—#/7)
where ¢ is the transit time to a point midway between the points, say a distance L from
the emitter. If the electric field is £ = AV/AL, then the transit time ¢ = LAL/uyAV.
Hence if In I, as determined from the ratio of conductivities, is plotted against t = LAL/u,AV
a straight line with intercept ln v and slope —1/7 should be obtained. See Chapter 12.

22 Transistors using p-type germanium have been described by W. G. Pfann and J. H. Scaff,

Phys. Rev. 76, 459 (1949). Electron injection in p-type germanium has also been observed by
R. Bray, Phys. Rev. 76, 152, 458 (1949).
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shown in Figure 3.7, this conductance is seen to be a linear function of the
hole concentration. The conductance of a point contact arises in part from
electron flow and in part from hole flow. From experiments using mag-
netic fields,?® it has been estimated that under equilibrium conditions the
two contributions to the conductance may be comparable. In connection
with Figure 3.7 it should be noted that the hole concentration on the
abscissa is the average hole concentration throughout the entire cross
section; the hole concentration may be much less near the surface due to
recombination on the surface.
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Fic. 3-6—Dependence of Collector I, Upon Average Hole Density Being Swept by
Collector Point. Collector Biased 20 Volts Reverse.

Techniques of the sort described previously can be used to measure the
properties of collector points. If a collector point is placed between the
emitter and P; in Figure 3.3, then the hole current extracted by the
collector can be determined in terms of the hole current past Py and P,.
By these means an “intrinsic o for the collector point can be determined.
The intrinsic « is defined as follows:

a; = intrinsic @ = the ratio of change in collector current per
unit change in hole current actually arriving at the collector.

3.1d. Studies of Transient Phenomena. The technique of using a
collector point to measure hole concentrations has been employed in a

22 Y4, Suhl and W. Shockley, Phys. Rev. 75, 1617 (1949); 76, 180 (1949).
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number of experiments similar to those described in connection with Figure
3.1. These experiments give information concerning hole lifetimes, hole
mobilities, diffusion and conductivity modulation.

One of the methods employed to measure hole lifetime involves the meas-
urement of the increase in collector current, produced by the arrival of the
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Showing that Conductance Depends on Hole Concentration but Not on Currents in

Filament. For Each Value of I, the Hole Density Was Varied by Varying Ip + I,
from .038 to 0.78 ma.

leading edge of the hole pulse, as a function of the transit time of the holes
from emitter to collector. This time is varied by varying the distance be-
tween the emitter and the collector points.

In Figure 3.8 we show a plot, obtained in this way, from a sample of
germanium having dimensions 1.0 X .05 X .08 cm. It is seen that the
increase in collector current due to hole arrival decays exponentially with a
time constant of 18 microseconds. This time constant increases as the
dimensions of the germanium sample are increased so that a time constant
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of 140 microseconds was measured, using a sample having dimensions
2.5 % .35 X .30 cm. Since the holes injected into the interior of this
sample can diffuse to the surface and recombine in about 100 microseconds,
the process may still be largely one of surface recombination. In any
event, it may be concluded that the lifetime in the bulk material used must
be at least 140 microseconds. Making use of the electron density deter-
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Fic. 3-8—The Decay of Injected Holes in a Sample of #-Type Germanium.

mined from other measurements, we conclude that the recombination cross
section must be less than 1018 ¢cm2.  This cross section, which 1s less than
1/400 the area of a germanium atom, may be so small because a hole-elec-
tron pair has difficulty in satisfying in the crystal the conditions somewhat
analogous to conservation of energy and momentum which hinder recom-
bination of electrons and positive ions in a gas discharge. Thusit has been
pointed out that a hole-clectron pair will have a lowest energy state n
which the two current carriers behave something like the proton and elec-
tron of a hydrogen atom.2*  Such a bound pair are called an exciton and
the energy given up by their recombination is the “exciton energy.” In
order to recombine they must radiate this energy in the form of a light

24 G, H. Wannier, Phys. Rev. 52, 191-197 (1937).
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quanta (photon) or a quantum of thermal vibration of the crystal lattice
(phonon). The recombination time for the photon recombination process
can be estimated from the optical constants for germanium and the theory
of radiation density using the principle of detailed balancing, which states
that under equilibrium conditions the production of hole-electron pairs by
photon absorption equals the rate of recombination with photon emission;
the lifetime obtained in this way is about 1 second at room temperature
indicating that the photon process is unimportant.”® As has been pointed
out by A. W. Lawson,2 the highest energy phonon will have insufficient
energy to carry away the “exciton energy” of a hole-electron pair and,
therefore, the release of energy will require the cooperation of several
phonons with a correspondingly small transition probability.

When a square pulse of holes is injected in an experiment like that of
Figure 3.1, the leading and trailing edges of the current at the collector
point are deformed for several reasons. Owing to the high local fields at
the emitter point, some of the holes actually start their paths in the wrong
direction—i.e. away from the collector; these lines of flow later bend for-
ward so that those holes also pass by the collector point but with a longer
transit time than holes which initially started towards the collector. A
spread in transit times of this sort is probably largely responsible for the
loss of gain at high frequencies in transistors. For the experiments de-
scribed below, however, this effect is negligible compared to two others
which we shall now describe.

On top of the systematic drift of holes in the electric field, there is super-
imposed a random spreading as a result of their thermal motion. This
would cause a sharp pulse of holes to become spread so that after drifting for
a time #, the hole concentration would extend over a distance proportional
toV Dty where D = the diffusion constant for holes = £#Tu,/e = 45 cm?/sec.
As a result of this effect, the leading and trailing edges of the square wave
of emission current become spread out when they arrive at the collector.
This is shown in Figure 3.9, curve A for the leading edge and B for the trail-
ing edge. The points are 10 microsecond marker intervals traced from an
oscilloscope, the time being measured from the instant at which the emitter
current starts. For 4 and B the emitter current was so small compared to
the current 7, that the holes produced a negligible modulation of conductiv-
ity and each hole moved in essentially the same electric field. Itis to be
observed that the wave shapes are nearly symmetrical in time about the
half rise point and that the 4 and B waves are identical except for sign.

2 Optical constants for germanium have been published by W. H. Brattain and H. B.
Briggs, Phys. Rev. 75, 1705-1710 (1940) and H. B. Briggs, Phys. Rev. 77, 287 (1950). The
integration over the radiation distribution was carried out by W. van Roosbroeck.

26 Personal communication; a somewhat similar case is treated by B. Goodman, A. W,
Lawson, and L. L. Schiff, Phys. Rev. 71, 191-194 (1947).
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This is just the result to be expected from diffusion. Furthermore, analysis
shows that the spread in arrival time is in good quantitative agreement with
the theoretical wave shape using the diffusion constant appropriate for
holes. For this case the mid-point of the rise, corresponding to the crossing
point of the curves, gives the average arrival time and has been used to
obtain an accurate measure of the mobility.

Curves C and D correspond to conditions in which the emitter current
was relatively large—two thirds of the base current. High impedance
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Fic. 3-9—Collector Current Characteristics for the Circuit Shown in Figure 3-1.

sources are used so that [ is constant and 7. is a good flat topped wave.
For the currents used in this experiment, the conductivity is appreciably
modulated by the presence of holes. This accounts for the shape of curve
C, corresponding to the arrival of holes at the collector. It is seen that this
curve is not symmetrical but is much more gradual towards later times.
The reason for this is that the first holes to arrive are those which have
diffused somewhat ahead of the rest and move in material of low conduc-
tivity. The later holes travel in an environment of relatively high con-
ductivity and, consequently, in a lower electric field. (Since the current
is the same at all points between emitter and collector, the field is inversely
proportional to the conductivity.) The transit time for the later holes is,
therefore, longer and the hole density builds up more slowly for the latter
part of the incoming pulse of holes. The wave form obtained from the
trailing edge of the emitter pulse, curve D, is in striking contrast with the
leading edge. The first gradual decay, up to point X, is due to recombina-
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tion of holes and electrons; at Z the emitter current becomes zero; con-
sequently, the electric field is reduced and the holes arriving at X have
taken a longer transit time than the holes arriving at #3 and a larger fraction
of them have recombined with electrons. The true trailing edge, running
from X to Y, is appreciably sharper than the leading edge. The reason for
this is that holes lagging behind the main body of holes are in a region of
relatively low conductivity and high electric field and tend to catch up with
the main body. Thus the same effect which lengthens wave C acts to
shorten wave D.

C. Herring has been able to obtain mathematical solutions for the appro-
priate equations bearing on the matters just discussed.*”

The delay feature discussed in connection with Figures 3.1 and 3.9
indicates interesting possibilities of using germanium filaments as delay or
storage elements.

3.2 MAGNETIC CONCENTRATION OF HOLES AND
ELECTRONS, THE SUHL EFFECT

Because of its great importance in affording a means of investigating nole
lifetimes and related matters, we shall discuss the magnetic concentration
effect observed by Suhl and Shockley.! This experiment represents an
extension of the Hall effect beyond its usual range of application and gives
direct experimental evidence that holes and electrons moving in magnetic
fields are subjected to a sidewise thrust.

The experimental arrangement may consist of an n-type germanium
filament which is placed in a transverse magnetic field, Figure 3.10(a). If
an electric field E, causes an electron flow parallel to the filament, then
a Hall voltage will appear across the specimen and, for the polarities shown,
the top surface will be charged negatively.? The effect is produced,
according to theory, by transverse force tending to thrust electrons to one
side as they drift down the filanent. For the case shown, the top surface
of the filament will become negatively charged, and the total electric field,
having components E, and E,, will form angle 8, with the lines of current
flow. If a few holes are injected into this field by the current I, they will
be deflected by the magnetic field towards the same side as the electrons.
(As discussed in Section 8.7, the sidewise thrust is proportional both to
velocity and to charge of the particle, each of which is reversed for a hole
compared to an electron so that the magnetic thrust is in the same direc-
tion.) In addition, the transverse component, E,, of electric field which

27 C. Herring, Bell Syst. Tech. J. 28, 401-427 (1949); see also Chapter 12.

1 H, Suhl and W. Shockley, Phys. Rev. 75, 1617-1618 (1949).

2 An elementary description of the Hall effect is given in Sections 8.6 to 8.8. Figures 8.7
and 8.9 show important features.
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holds electrons away from the top surface, tends to concentrate holes
there. The net result is that holes are drawn towards the top surface.
Experimental evidence for this predicted behavior of the holes is obtained
with the aid of the probe points. As Figure 3.7 shows, the conductance of
a probe point is a linear function of hole density. Consequently, the

EXCESS ELECTRONS DONORS

(d) CONCENTRATION OF INJECTED HOLES

F1c. 3-10—Magnetic Concentration of Holes and Electrons.

conductance of the points can be used as a measure of hole density. The
observed result can be visualized with the aid of Figure 3.11, which shows
schematically the sort of effects expected. For no magnetic field, the hole
current spreads out across the specimen by diffusion; anticipating the
result to be established later, we have indicated that some of the lines of
flow terminate on the surface where a major portion of the recombination
of holes and electrons occurs. For a magnetic field Hy, the holes are




1.2) MAGNETIC CONCENTRATION OF HOLES AND ELECTRONS 73

strongly deflected towards the top side of the filament. For Hy > Hji,
the effect is still more pronounced and a second effect is indicated: the hole
current dies away more rapidly to the right. The reason for this is that
the holes combine ‘with electrons on the surface of the filament and the
increased concentration near the surface for Ho compared to H; means an
increased opportunity for recombination and a decreased lifetime.

5 ST
oA e seee s
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7

{€) H=H>H;

Fic. 3-11—Paths of Holes Injected into #n-Type Filament Showing Concentration
by a Magnetic Field H directed into the Plane of the Figure.

For a suitably designed experiment the effects may be quite large. The
angles 6, and 0, between currents and electric field have values, as given

in Chapter 8, of
8, = 1078y, H = 1078 X 2600 X 10* = 0.26
= 15° for 10,000 gauss (1)
g, = 1078 X 1700 X 10* = 10° for 10,000 gauss. 2

For a longitudinal electric field E, of 20 volts cm, the total thrust trans-
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verse to the filament is approximately equivalent to a field of
E. tan (8, + 6,) = 8.5 volts/cm, 3)
giving an effective voltage difference of 0.025 X 8.5 = 0.21 volt across a

filament 0.025 cm in width. This is about 8.5%4T, so that pronouncéd
concentration will result. The total distance a hole must travel from one
side of the filament to the other is 0.025/sin 25° = 0.06 cm. Since the drift
velocity is about 1700 X 20 = 3.4 X 10* cm/sec, the transit time will be
less than 2 X 10 sec. This time is probably at least one order of mag-
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nitude less than the time for recombination in the interior of a good ger-
manium specimen so that the concentration should be accomplished well
before holes can get into equilibrium in the interior.

A typical set of experimental data is shown in Figure 3.12. The con-
ductance of a point, such as Py, is shown as a function of H. Positive H
deflects holes towards Pi, and negative H away from it. With the first
increase of H above zero, the conductance rises, indicating a higher hole
concentration produced in the neighborhood of the probe point. Still
further increase of H produces a higher degree of concentration of the holes,
as shown in Figure 3.11; however, at the same time, the holes decay more
rapidly so that the signal at a point like P; is decreased. As a result of
these opposing tendencies, the curve rises to a maximum and then decreases.
For negative values of H, the holes are deflected away from the point, the
lifetime is decreased as for positive H, and a monotonic decrease of the
response results.

The curve shown in Figure 3.12 is theoretical and has been fitted to the
data by using as the law of recombination:

(Rate of recombination of holes per unit area of surface)
= (a constant s) X (hole density just next to the surface). 4)
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The value of s, which has the dimensions of velocity, chosen to fit the data
is 1500 cm/sec. Other methods of analysis have given comparable values
for similar specimens.

The failure of the theory to fit the points for large negative values of H is
significant. Practically the same points are obtained if no hole injection
is used at all. The interpretation is that this part of the curve arises from
holes being spontaneously generated on the surfaces. These holes are
swept away from the point for negative /; however, some holes still reach
the point and affect its conductance. For large negative A, the limiting
value of 20 micromhos is thought to be that corresponding to a nearly
complete absence of holes.

By a suitable proportioning of the specimen and the fields, it is possi-
ble to separate the effects of surface generation and volume generation.
The mathematical details are not appropriate to Part I, however, and are
postponed to Chapter 12. The practical use of the concentration of
injected holes by magnetic fields has also been considered, particularly
by R. L. Wallace.

The purpose of this section on magnetic concentration of holes and
electrons has been, on the one hand, to show one more item of experimental
evidence that holes and electrons really behave as the theory of the later
chapters predicts and, on the other, to introduce the reader to a new and
powerful experimental technique which the author predicts will play a
major role in the analysis of transistor materials.

ProBLEMS

(Remark: Most of the problems bearing on the material of this chapter
involve solving the continuity equation. A number of such problems are
given at the end of Chapter 12.)

1. This problem is intended to show why deviations from

n=mny+p

given in equation (5) of Section 3.1 do not ordinarily occur. Suppose that
in the interior of a large block of n-type germanium with a dielectric con-
stant of k, = 16 and conductivity ¢ = 0.4 ohm™ cm™" the value of # — p
differs by 19, of 1y throughout a sphere 1072 cm in radius. Calculate the
voltage and field at the surface of the sphere.
Ans.  0.36 volt, 36 volts/cm.

2. Assume that Figure 3.3 applies to the specimen of problem 2 of
Chapter 1. Suppose that the current Jp is 2.9 ma and ¢ is 1.8 ma and
4 = 0.5 and that recombination is negligible. Using u, = 1700 and
tn = 3600 cm?/volt sec and 4 = 2.1 (these values are in agreement with
the problems of Chapter 1), show that the conduotivity is increased from
0.5 ohm™em™ to 1.23 ohm™cm™. Show that the electric field is reduced
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from the value 0.94 volts/cm it would have if ¥ = 0 to 0.38 volts/cm due
to the presence of injected holes and that the resistance is reduced from
400 ohms to 162 ohms. Show that the electron concentration is increased
from 8.70 X 10 cm™ to 17.4 X 10'* cm™®. (Compare these results
with problem 5 of Chapter 1.)

3. Consider an #-type germanium filament of length L, cross-sectional
area A and conductivity oo = eng#,. Suppose that an added density of
holes p(x) is present so that there are p(x)4dx holes in element of length dx.
Show that if p(x) is much smaller than 7, the increase in conductance of
the filament is

L
o + 1)L [ Ap () = eun + m) L7 pro

where pios. is the total number of added holes. (This result may be ob-
tained by writing the resistance of the filament in the form

L
R = [ ds/ de fualmo + p(0] + w2 ()

and expanding the fraction in powers of p(x)/n, which is assumed to be a
small quantity.) This problem proves that for a uniform filament and for
small hole densities, the change in conductance depends only on the total
number af added holes present and not on their distribution.




CHAPTER 4
ON THE PHYSICAL THEORY OF TRANSISTORS

In this chapter, the theories of hole and electron injection discussed in
previous chapters are used to explain the internal workings of transistors.
The discussion starts with the filamentary transistor. This is the simplest
type from the point of view of exposition, since its ability to amplify de-
pends chiefly on the conductivity modulation discussed in Section 3.1.
The discussion then proceeds to other types of transistors which employ
rectifying junctions in their output circuits. In Section 4.2 the discussion
of rectifying junctions is begun with a treatment of one of the simplest
types, the p-n junction. It is then shown how a transistor may be made
by combining such junctions. In Section 4.3, metal point-contact rectifiers
are described and compared with p-z junctions, and in Section 4.4 the
theory of these rectifying junctions is applied to relate the physical picture
to the equivalent circuit for the type-A transistor. In Section 4.5 a
description of the electrical forming of the contacts in a transistor is pre-
sented together with a discussion of structures leading to high values for a.
Section 4.6 discusses briefly phototransistors and counters.

4.1 THE THEORY OF FILAMENTARY TRANSISTORS

4.1a. The Equivalent Circuit. In Figure 4.1 we show a transistor with a
filamentary structure.' Modulation is achieved in this case by injecting
holes at the emitter point which flow to the right and modulate the resist-
ance in the output branch between emitter and collector. Structures of
this sort can be produced by the sand-blasting technique discussed in
Section 3.1. The enlarged ends, which give the unit a dumbbell appear-
ance, decrease the problem of making contact to the unit. The large area
at the left side serves the additional purpose of reducing unwanted hole
emission from the metal electrode and affords an opportunity for any
emitted holes to recombine before they enter the narrow part of the unit.

The theory of this transistor is relatively simple and most of the features
we shall discuss in connection with it have counterparts in the theory of the
type-A transistor. We shall discuss the case for which the injected current
is a small fraction of the total current in the filament. Under these con-

I Transistors of this type, employing p-# junctions as well as point contacts as emitters,
have been discussed by W. Shockley, G. L. Pearson, M. Sparks, and W. H. Brattain, Phys.
Rev. 76, 459 (1949). This section follows W. Shockley, G. L. Pearson, and J. R. Haynes,
Bell Syst. Tech. J. 28, 344-366 (1949).

77
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ditions we can use a simple linear theory. We shall show that the behavior
of the transistor can be given for small a-c signals by the equivalent circuit
in Figure 4.1, which shows the current and voltage relationships in a form
equivalent to those used in connection with the type-A transistor. We
shall carry out the analysis assuming that ¥ = 0, the grounded base condi-
tion. This procedure simplifies the algebra involved in deriving the equiva-
lent circuit by eliminating one variable; the equivalent circuit itself is, of
course, applicable to cases in which the base is not grounded.
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Fic. 4-1—Filamentary Transistor and Equivalent Circuit.

The point /J in Figure 4.1 represents a point in the filament near the
emitter point. The current from the emitter point will be determined by
the difference between its voltage ¥ and that of the surrounding semi-
conductor, namely the voltage at J. Thus we can write

Io=fVe= Vo). - )

For small a-c variations, 7¢ Ue and vy, this equation leads to the rela-
tionship o

ie = (ve - vJ)fe’) (2)

where f,’ is the derivative of f in respect toits argument. Letting f¢ =1/7¢
we may rewrite this equation as

U, — Uy = Fee 3)
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This relationship is correctly represented by the . branch of the equivalent
circuit. The voltage at J, under the assumed operating conditions with 7,
positive and much less that 7, will be —Iyr, where ry is the resistance
from the base to an imaginary equipotential surface passing through J.
Since v, = 0, corresponding to grounded base operation, this leads to

vy = —rfy = +reie + Tvie “4)

since iy 4+ i + i = 0. This relationship is obviously satisfied by the r,
branch of the equivalent circuit.

We now come to the collector branch which we have represented as a
resistance 7, and a parallel current generator® aef.; the value of rc corre-
sponds to the case of no hole injection. (This circuit is equivalent to
another in which the parallel current generator is replaced by a series
voltage generator agrci..) We must show that this part of the equivalent
circuit represents correctly the effect of injecting holes into the right arm
of the filament. We shall suppose that there is negligible recombination so
that the hole current injected at the emitter point flows through the
entire filament. (We consider recombination in the next section.) The
current I, in the collector branch thus contains a component —yl, = I,
of hole current [minus because of the algebraic convention that positive
I.(= —I — I.) flows to the left]. The added hole and electron con-
centrations lower the resistance and 7. changes to r, + drc, where ér¢ is
negative. The current voltage relationship for this branch of the filament
then becomes

Ve —Vy= (re + ore)l. 5)

Our problem is to reexpress this relationship in terms of the small a-c com-
ponents and show that it reduces to the relationship

Vo — 05 = re(ic + i) (6)

corresponding to the equivalent circuit. For small emitter current the
analysis is carried out conveniently as follows: The ratio of hole current to
the total current is —+yl/I,.. The ratio (r, + dr.)/r corresponds to
Go/G discussed in connection with Figure 3.3. The ratio of hole current to
total current is given in (12) of Section 3.1 in terms of Go/G and may be
rewritten as

vI. 11— (Go/G) —0r
B AR T R (e @
giving
dore = ro(1 + &)vl /1. (8)
2 The subscript ¢ in a, implies equivalent circuit. a, differs from & = — (81./01)e, by the

relationship a; = a + (& — 1) (rp/7e), equivalent to equation (24).
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(Since I is negative and I is positive this equation shows that ér, is nega-
tive, that is, the conductivity has been increased by the hole current.)
Putting this value of 7, + 6r. into the equation for ¥, — Vs gives

Ve —=Vy= (re+ o)1,
rc[]c + (1 + b)'yle] (9)

If we consider small a-c variations in the currents and voltages, this reduces
to the equation given by the equivalent circuit with

a, = (14 &)y. (10)

The data® of Section 3.1 indicate that for holes injected into n-type ger-
manium v = 1, and for & = 1.5 we obtain a, = 2.5.

Using vy = (i + ;) we eliminate v; from (3) obtaining an equation
between v and the currents. Similarly the small signal form of (9) gives
an equation for y,:

It

I

Ve = (re + rb)ie + 7vi; (lla)
Ve = (7‘5 + aerc)ie + (rc + rb)ic- (llb)

These equations are formally identical with those for the equivalent circuits
of the type-A transistor and, therefore, lead to the equivalent circuit of
Figure 4.1, which is identical with that of Figure 2.7.

It should be emphasized that although hole injection into n-type germa-
nium plays a role in both the type-A and the particular form of filamentary
transistor shown in Figure 4.1, there are differences in the principles of
operation. One important feature of the type-A is the high impedance of
the rectifying collector contact which, however, does not impede hole flow
and another important feature is the current amplification occurring at the
collector contact. Neither of these features is present in the filamentary
type shown. Instead, the high impedance at the collector terminal arises
from the small cross-section of the filament. The modulation of the output
current takes place through the change in body conductivity due to the
presence of the added holes, a change which appears to be unimportant in
the type-A transistor. In the filamentary type, current amplification is
produced by the extra electrons whose presence is required to neutralize
the space charge of the holes. Current amplification in the type-A trans-
istor is, probably, also produced by the space charge of the holes? but the
details of the mechanism are not as easily understood. We shall discuss
theories of forming and of high «’s in Section 4.5.

4.1b. The Origin of the Positive Feedback and Instability. The fila-
mentary transistor exhibits the same positive feedback as the Type-A and

3 See Chapter 12 for the best estimates.
4 J. Bardeen and W. H. Brattain, Phys. Rev. 75, 1208-1225 (1949).
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for much the same reason. Because of its simple structure, however, the
description is somewhat more straightforward for the filamentary type.

We shall describe in words some of the phenomena associated with the
positive feedback, next attempt a physical description of the processes
involved, and finally derive the results in terms of the equations.

Suppose the collector is maintained at a fixed d-c bias ¥V, say —20 volts.
Next suppose that the emitter current is gradually increased from zero to
a larger value. It is found, as discussed in connection with the static
characteristics of Figure 2.6, that the emitter voltage rises to a maximum
and then falls. In other words, the emitter connection exhibits a nonlinear
response and a negative resistance; although the emitter voltage is uniquely
determined by the emitter current, the reverse is not true and, for a given
value of emitter voltage, there is more than one possible value for the
emitter current. This gives rise to possible instability if the transistor
input is operated from a low-impedance voltage source, and a transient
may cause a transition from a low-current condition to a high-current
condition. With external circuit parameters properly chosen to limit the
currents, both the high- and low-current conditions may be within the
allowable dissipations. Such circuit arrangements may be employed in
“flip-flop” and counting circuits. However, if the external resistors were
chosen as discussed in Section 2.2 so as to give maximum available gain,
then, although the circuit might be stable at the operating point, this
stability might be conditional and a large transient could cause a transition
to the high-current condition with possible destruction of the unit.

In order to explain the particular behavior of V. as a function of I,
shown in the static characteristics of Figure 2.6, we must show why the
characteristic is nonlinear with a resistance which drops from positive to
negative values. The explanation thus involves two parts, one having to
do with the negative resistance and one with the nonlinearity. The
negative resistance arises from the presence of positive feedback in the
equivalent circuit coupled with values of a, greater than unity, and the
nonlinearity arises chiefly from the varying resistance of the rectifying
emitter contact. We shall discuss the negative resistance first, basing the
description on the physical picture of current flow previously described.

The negative resistance feature may be understood by considering the
value of ¥y as I.is increased. (For purposes of this exposition, which
is intended to give the physical picture involved without the burden of
mathematical refinements, we shall assume that v = 1 so that the hole
current is I, and shall neglect recombination so that a, equals 4 + 1 and
is independent of the currents.) If 7 remained constant so that the
current through 7. in the equivalent circuit of Figure 4.1 also remained
constant, then the effect of /. would be to increase I, by —a.l.. Thus,
in addition to the injected hole current I, which flows in the right branch
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in part (a) of Figure 4.1, there will be an added electron current (a; — 1)7,
due to electrons moving to the left. These added electrons must flow out
through 7, increasing the current from its initial value with 7, = 0 by
an amount (a, — 1)/, This requires an added voltage across r; of
ro(a. — 1)1, the sign being such as to make /; change in the negative
direction. Thus the injection of a positive current into the germanium at
e makes the adjacent point go not more positive, as it would for the case
of a positive resistance, but negative instead. If the drop across », were
negligible, this would mean that e would exhibit a negative resistance.

However, 7. is the differential resistance, d(¥'¢ — V) /dI ., of a rectifying
point operated in the forward direction. Thus it initially exhibits a large
positive resistance, which decreases as /. is increased. For small 7, the
positive resistance 7 is much larger than the negative resistance (a, — 1)r3;
however, for large values of I, 7. may be less than (@, — 1)73, and the
input resistance at e will shift from positive to negative, leading to the
multivalued behavior discussed previously. In this treatment, the effect
of changing 7y upon the current through ., was neglected. If 7, < 7,
this, in effect, introduces an unimportant correction as we shall next show
by dealing algebraically with the equations of the equivalent circuit.

We shall now assume that all the parameters in the equivalent circuit are
constant except 7, and shall calculate the differential resistance v,/ when
V. is maintained at constant bias. The constancy of 7, requires that
v, = 0 and hence that

Ve = (rb + aerc)ie + (rc + rb)ic =0 (12)
and, hence, that
. are + 13,
e = — — 1 (13)
e+ 1y

Using this value of 7, in equation (11a) for v, gives

0 = (re+ rodie + 1o (— ore 1y ,) (14)
re+ 7
This leads to the differential resistance
Ve agre + rb2 1
—_— == —_———— = e — e — —_— 15
ie ret re + 7y re= (o 1)rbl + ru/7¢ (15

This equation shows that the input resistance v./7, can be negative. If
ry K re, then the input resistance is negative when r, < (@, — 1)1, the
condition previously discussed.®

5J. Bardeen and W. H. Brattain have previously derived essentially the same equation.
Their expression is written as af’7p=1, where f/=1/ry; so that this is equivalent to arp/ry=1.
From the definition of o and the formula for e, given in Figure 2.7, it can be shown that the
two conditions are equivalent. I am informed by R. M. Ryder that from the circuit point of
view, all of these conditions are equivalent to uf = 1 in feedback terminology.
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4.1c. Effects Associated with Transit Time. Two important effects
arise from the fact that a finite transit time is required for holes to traverse
the 7, side of the filament: during this time the holes recombine with elec-
trons and the modulation effect is attenuated for this reason; also the
modulation of the conductivity of the filament at any instant is the result
of the emitter current over a previous interval and for this reason there
will be a loss of modulation when the period of the a-c signal is comparable
with the transit time or less. In accordance with the results given in the
problems of Chapter 3, for small injected hole densities the change in
conductance of the active branch L. of the filamentary transistor of
Figure 4.1 is dependent on the total number of added holes and not on
their distribution along the filament.

In the problem at the end of this chapter, a treatment based on the total
number of holes present is given. In this section, the result is obtained by
reasoning by analogy using the results of Section 4.1a.

For the small signal theory, the effect of transit time is readily worked out
in analytic terms. We shall give a derivation based on the assumption that
the lifetime of a hole before it combines with an electron is 7. According
to this assumption, the fraction of the holes injected at instant # which are
still uncombined at time £ is exp [— (¢2 — #1)/7p]. This means that the
effect in the filament at any instant fp is the average, weighted by this
factor, of all the contributions prior to ¢ back to time f, — 7; where 7, 1s
the transit time; holes injected prior to f — 7, have passed out of the
filament by time #. If the emitter current is represented by €™’ the
effective average emitter current is

(2]
et (5) = i [ explion — (3= 0)/rddn/r (16)
2T

The term 4t /7 is chosen so that a true average is obtained since the sum
of all the 41 intervals add up to 7,. The integral is readily evaluated and
gives

g 1 — €xp [—doors = (ru/my)]
int + (Tg/Tp) (17)

feett (f2) = 0@

The result so far as the equivalent circuit is concerned is that obtained by
taking a, as®

Qg = 'Y(l + b)B) (18)

6 The derivation of Equations ¢11a) and (11b), describing the equivalent circuit, shows
that hole injection enters only through the term ér.J in (9). This term leads only to ageie =
(1 4+ &)y in (11b) and should be replaced by (1 + B)yreiec et = (1 + 8)vBreie leading
to (18).
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where
1= expl—iwn — (r/ry)]
e R B (19)

8 represents the effect of recombination and transit angle, wry, in reducing
the gain.

We shall consider two limiting cases of this expression. First if wry is
very small, the new factor becomes

B = (rp/me)(1 — €7™). (20)

If r, is much larger than 7, so that the holes recombine before traversing
the filament, then the exponential is negligible and 8 becomes simply o/ Tt
This means that the effectiveness of the holes is reduced by the ratio of their
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effective distance of travel to the entire length of the filament, that is,
7p/7¢ 1s the ratio of distance traveled in one lifetime to the entire length of
the filament. FEssentially the holes modulate only the fraction of the
filament which they penetrate. The transit time depends on the field in
the filament which is |7, — V;|/L., the absolute value being used since ¥,
is negative. The transit time is thus

Tt=Lc/[ﬂ'prc—VJ[/LC]:ch/P-prc—VJ‘- (21)
For very small emitter currents V,— Vs =1V, (r. + rp) so that
10 = L2(re 4 r5)/upre| Vel (22)

and 7, is inversely proportional to /.. For large values of ¥, 7, approaches
zero and B approaches unity.  The dependence of 8 upon 7, has been inves-
tigated by measuring & and plotting it as a function of |1/7,| as shown in
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Figure 4.2. The value of

a= —(01/d)v, = —(i/i)v, (23)
is readily found from the equivalent circuit, using equation (11b), to be

Tb Qele

a = .

ry -+ 7e rs + 7e
For one particular structure investigated, the values of » and 7., obtained
at I, = 0, were in the ratio 1:4. The value of « obtained by extrapolating
the data to |V,| = o« is 2.2; the value given by the formula for this case
withg = land é = 1.51s

a=02+08X25XH, (25)

(24)

from which we find v = 1.0, in agreement with the result of Figure 3.5 of
Section 3.1 that substantially all of the emitter current is carried by holes.”
The theoretical curve shown on the figure is

a =02+ 0.8 X 2.5 X |7,/10[(1 — e V), (26)
This corresponds to

Tt 10 ch (rc + 7'1;)

= 2, 27
Tp \Vvl "'p“p’C‘yﬂl @7

from which it was concluded that for the particular bridge studied v, was
0.2 microsecond.
If 7, is much shorter than 7, then the holes penetrate the whole filament
and 8 becomes
_ 1 — exp (—iwry)  exp (—twrs/2) sin (wry/2) )

= 2
B fwr; (wr4/2) (28)

For small values of wr, 8 approaches unity since (sin x)/x approaches unity
as » approaches zero. For wry/2 = , the response is zero. This is the
condition that 7, = 2r/w = 1/f. TFor this case the filament is just so long
that the modulation is averaged over the time of one cycle of the input
signal and since this average includes all phases, the modulation vanishes.

Preliminary experiments with filamentary transistors, made in accord-
ance with the principles discussed above, appear to confirm the general
aspects of the theory.® Power gains of 15 db have been obtained and fre-
quency responses showing a drop of 3 db in « at 10° cycles/sec have been
observed. Noise measurements indicate an improvement of 10 to 15 db
over the average type-A transistor for comparable conditions of preparation.

7This depends on the value of 1.5 for & which is based on the “Hall mobility.” See

Section 12.9.
8 W, Shockley, G. L. Pearson, J. R. Haynes, Bell Syst. Tech. J., 28, 344-366 (1949).
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4.2 p-n JUNCTIONS AND p-n JUNCTION TRANSISTORS

4.2a. The Nature of the Current in p-n Junctions.! The physical theory
of rectifying junctions in transistors may be more simply described for
p-n junctions than for metal point contacts, and a discussion of the latter is,
therefore, postponed until Section 4.3. Both collectors and emitters may
be made from p-7 junctions and it is possible to show how emitter junctions
may be designed to have high efficiency for injecting carriers of the sign
not normally present in appreciable numbers.

The p-# junctions which we shall discuss occur when a piece of germanium
or silicon has a variable concentration of donor and acceptor centers so that
a transition from p-type to m-type occurs in a continuous solid specimen.
If two separate pieces of germanium of opposite conductivity types are
simply placed in contact, however, layers of oxide or other material on the
surface, surface states, roughness, etc., in general prevent a true p-# junc-
tion from being formed.”

Good p-# junctions may be formed in many ways. They occur naturally
in melts of relatively pure silicon because of segregation of the impurities
upon solidification.?  They have been produced in germanium by convert-
ing one part of a piece of n-type material to p-type either by nuclear bom-
bardment or by heating.*

In Figure 4.3 we show an idealized p-n junction. Part (a) shows
pictorially the distribution of donors, acceptors, holes, and electrons;
(b) shows the densities of donors and acceptors; and (c) shows the densities
of holes and electrons. These densities adjust themselves under the
thermal equilibrium situation represented so that there is no current either
of holes or electrons and so that the recombination of holes and electrons
in any small element of volume just balances the thermal rate of production
of holes and electrons. Since the holes are more concentrated in the p-type

1 P_n junctions were investigated before the war at Bell Telephone Laboratories by R. S.
Ohl. Work on p-» junctions in germanium has been published by the group at Purdue
directed by K. Lark-Horovitz: S. Benzer, Phys. Rev. 72,1267 (1947); M. Becker and H. Y.
Fan, Phys. Rev. 75, 1631 (1949); and H. Y. Fan, Phys. Rev. 75, 1631 (1949). Similar junc-
tions occur in lead sulfide according to L. Sosnowski, J. Starkiewicz, and O. Simpson, Nature
159, 818 (1947); L. Sosnowski, Phys. Rev. 72, 641 (1947); and L. Sosnowski, B. W. Soole,
and J. Starkiewicz, Nature 160, 471 (1947). The theory described here has been discussed in
connection with photoelectric effects in p-n junctions by F. S. Goucher, Meeting of the
American Physical Society, Cleveland, March 10-12, 1949 and by W. Shockley, G. L. Pearson,
and M. Sparks, Phys. Rev. 76, 180 (1949). For a general review of conductivity in p- and
n-type silicon see G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949); J. H. Scaff, H. C.
Theuerer, and E. E. Schumacher, J. of Metals 185, 383 (1949); and W. G. Pfann and J. H.
Scaff, J. of Metals 185, 389 (1949). The latter two papers also discuss photovoltaic barriers.

2 For a review of these matters see J. Bardeen, Phys. Rev. 71, 717-7%] (1949).

3 See J. H. Scaff, H. C. Theuerer, and E. E. Schumacher, /. of Metals 185, 383-388 (1949);
and W. G. Pfann and J. H. Scaff, J. of Metals 185, 389-392 (1949).

4 M. Becker and H. Y. Fan, Phys. Rev. 75, 1631 (1949); W. Shockley, G. L. Pearson, and
M. Sparks, Phys. Rev. 76, 180 (1949j.
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material, they tend to diffuse to the #-region. This tendency is prevented
by an electrostatic field shown in (e¢). This field makes the electrostatic
potential more positive in the #-type material so that the n-region is thus
able to keep holes out and to hold electrons in. A similar situation holds
true for electrons. In part (d) the net charge density is shown (neglecting
any electrons trapped on donors or holes on acceptors, a legitimate assump-
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Fic. 4-4—Distribution of Holes and Electrons and Energy as a Function of Position
in a p-n Junction under Applied Biases.

tion for germanium, see Chapter 10). This charge density produces a
dipole layer which in turn produces the potential difference shown in (e).
The determination of the potential distribution under equilibrium condi-
tions is, in principle, a straightforward application of the equilibrium
theory discussed in Chapters 10 and 12.5 (The potential rise is then found
to be an inevitable consequence of the requirement that the Fermi level be
constant throughout the specimen; when the appropriate analysis is
carried out, the situation illustrated in Figure 4.3 is deduced.)

We shall next consider the nature of current flow across the junction
when voltages are applied. The situations of interest are shown in the
first two rows of Figure 4.4; the bottom row will be discussed later. Under

5See W. Shockley, Bell Syst. Tech. J. 28, 435-489 (1949) for mathematical details covering
the same ground as this section,
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equilibrium conditions some of the holes shown in (d) will acquire enough
energy by thermal agitation to climb the potential rise and diffuse into the
n-region. Once in this region they will combine with electrons. This
current is exactly balanced (according to the principle of detailed balancing,
see Chapter 11) by holes thermally generated in the n-region, asmembers
of hole electron pairs, which diffuse to the transition region and slide down
the potential hill into the p-region. In a similar way electron currents flow
and also exactly balance each other.

Under conditions of reverse bias, a negative potential is applied to the
p-region so that the height of the potential hill is increased, part (f). For
biases of few tenths of a volt or more, the hill is so high that a negligible
number of holes acquire sufficient thermal energy to climb it, and the hole
current énto the n-region substantially vanishes. The hole current from the
n-region, however, is practically the same as for (d); in part (f) the origin
of this current is represented as the thermal generation of a hole electron
pair followed by the diffusion of the hole to the transition region and its
subsequent transit to the p-region. This hole current, as remarked pre-
viously, is almost unaffected by the applied potential. For this reason the
reverse hole current saturates, that is, reaches a limiting value as the
reverse voltage increases. Precisely similar comments apply to the elec-
tron flow, and it is also evident that the same hill which holds holes in the
p-region holds electrons in the n-region; that is, reverse voltage is reverse
for both hole and electron currents.

In the forward direction, the hill is diminished in height and, therefore,
a relatively large hole current flows over it and into the #-region. Some of
these holes diffuse back, the fraction being determined by the lifetime of a
hole in the n-region. Mathematical theory can be applied to the currents
involved, and the results can be expressed in terms of a current voltage
relationship, which we shall quote below.

Also shown in Figure 4.4 are the “energy band” diagrams appropriate to
this situation. Although the basic theory of energy bands is not developed
until the end of Chapter 5, the aspects of the theory needed in connection
with Figure 4.4 are sufficiently simple so that they can be described directly
from the figure. As we have discussed, an electron can be removed from
the valence band and set in motion in the conduction band. Such an
electron is in an excited state (like the car on the second floor) and its
energy is higher than it would be in a valence bond. These conduction
band levels are represented by the shaded region in the upper parts of the
bottom row of Figure 4.4. A similar situation holds true for the levels in
the valence-bond energy band. These lower levels correspond to holes,
which are simply unoccupied levels for electrons. The donors and ac-
ceptors are represented as plus and minus charges and are located at ener-
gies corresponding to their abilities to bind holes and electrons. For the
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case of interest in this section, we shall suppose that binding occurs to a
negligible extent so that we need not be concerned with these energies.
(A further discussion will be found in Chapter 9.) The tendency of
electrons to seek the lowest energy is equivalent to holes seeking the highest
electronic energy level. Since it is quantum-mechanically impossible to
have a half-excited electron (that is, there is no mezzanine or ramp in the
garage), there is a gap of energy levels between the valence-bond states and
the conduction states. The creation of hole-electron pairs by thermal
excitation corresponds to the raising of an electron across the energy gap as
shown in part (i). Kinetic energy of motion for the electron carries it to
energies higher in the conduction band, and kinetic energy of motion of a
hole carries it lower. These topics are discussed on the basis of the quan-
tum theory of energy bands at the end of Chapter 7 (see Figure 7.6, for
example). Since, furthermore, the charge on the electron has, unfortu-
nately, been chosen as negative, the energy level diagram for electrons is
upside down compared to the electrostatic potential.

The net hole current across the junction can be derived for the model of
Figure 4.4 and is found to be given by the following equation, familiar in
rectifier theory:®

Ip = Ipslexp (eV/kT) — 1] 1

where ¥ is the voltage (positive values of 7 being forward) applied across
the junction itself, ¢ is the electronic charge, and T is thermal energy.
When ¥ is expressed in volts and T is 300°K, corresponding to room tem-
perature, this equation becomes

I, = I lexp (397) — 1]
= I, (10'77 — 1). (2)

The value of Ips depends only on the n-type material and not on the
p-type. The value of Ip, is

I.. = epnDp/VDprp 3)

where 2, is the concentration of holes in the m-region, 7, the lifetime of a
hole in the n-region, and pp and Dp the mobility and diffusion constant for
holes. (Dp = wpkT/e = 1700/39 = 44 cm?/sec as shown in Chapter 12.)

For a semiconductor in equilibrium, a mass action law [see Section 10.3,
equation (19)} applies to the product of hole and electron concentrations.

6 W. Shockley, “Theory of p-n Junctions”, Bell Syst. Tech. J. 28, 435-489 (1949). This
equation was first published by C. Wagner, Phys. Zeits. 32, 641-645 (1931), for a different
model and represents the maximum nonlinearity attainable for purely electronic rectification.
Equations (1) and (3) are derived in Chapter 12.
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Hence, if the #-type material has a high concentration of electrons, it has
a small concentration of holes and I, will be small.

Similar equations apply to the flow of electrons. Forward flow for
electrons corresponds to the same polarity as for holes so that the hole and
electron currents are those of two rectifiers
in parallel. From the reasoning already /;?/?f;j///é;Sfiﬁ’tfé{fé/ﬁZ//
given, we see that if the concentration of *%
holes in the p-region is much greater than
the concentration of electrons in the #n-
region, then I, will be less than Ip, and
the current will flow across the junction
mainly as holes.
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In Figure 4.6 we compare the theoretical curve with experimental data
for a p-n junction. The fit is seen to be quite good except at high reverse
fields where secondary effects reminiscent of field emission setin. It should
be remarked that a 10 or 209, variation of ¢/kT from the theoretical value
of 39 volts™ will materially impair the fit of the data. This fact is a
verification that the effective charge on the current carriers is ¢, the charge
of the free electron.
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4.2b. A p-n Junction Transistor. In Figure 4.7 we show an idealized
transistor structure using two p-7 junctions, which separate the two p-type
regions P and P, from the n-type region N. Compared to the Type-A,
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Fic. 4-7—A p-n-p Transistor Compared with a Vacuum-tube Triode.

this transistor has the expositional advantage that a detailed mental picture
can be formed of the distribution of all the atoms involved. An instructive
analogy can be drawn between this structure and a vacuum-tube triode,
shown to the right. ’

In part (g) of the figure, the equilibrium concentration of holes and
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electrons is indicated together with the electrostatic potential {c). Holes,
as suggested schematically in the diagram, tend to seck points of lowest
electrostatic potential; electrons, having a minus charge, seek the highest
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points. 'The energy band diagram is shown in (e¢). In (b) voltage in

the reverse direction is applied across J. and a small forward voltage
across J.. 1If the p-type regions have much higher conductivity than
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the n-type region, most of the current across the junctions will be in
the form of holes. Furthermore, if the n-type region N, is so narrow that
a hole can diffuse across it with a small chance of recombining, the holes in
the current across J. will also flow across J..” If the electron currents
across the junctions are negligible and recombination in Np is neglected,
this transistor will draw no base current. If the emitter is grounded, a-c
voltages applied to the base will require negligible currents (at least at low
frequencies) and the behavior of the transistor will be like that of the
vacuum tube on the right, except that the mobile carriers are positive
rather than negative.

An interesting additional comparison between the transistor and the
vacuum tube may be based on the ways in which electrons carry current.
In fact it appears that in both cases current can be carried by electrons in
two ways which remain substantially separate and it is the control of one form
of current by the other that enables amplification to occur. We shall first dis-
cuss the two ways for the vacuum tube and then compare them with the
hole and electron processes for a transistor.

In the vacuum tube there are high concentrations of electrons in the
cathode, the grid, and the plate as shown in parts (o) and (p) of Figure 3.7.
There is a much smaller, but important, concentration of thermionically
emitted electrons just in front of the cathode. When operating voltages
are applied, the potential energy diagram for an electron will be as shown
in (n). At the grid wires themselves the potential energy is high since
the grid is negative in respect to the cathode. Between the grid wires the
potential energy is relatively low, and the electrons flow through these
passes between the peaks. If electrons are withdrawn from the grid wires,
so as to reduce its negative charge, the potential energy will become lower
in the grid region, and a larger current will flow. In the control region we
thus find one electron current controlling another: electrons which flow in
and out of the grid wires control electrons flowing in the space. The two
currents do not become mixed because (1) the grid is negative with respect
to the cathode so that thermionic electrons cannot reach it and (2) electrons
in the grid wires cannot escape because they are held in by the work func-
tion of the grid.®

In the transistor structure the application of voltage between emitter
and base has an effect similar to the application of voltage between grid
and cathode in the vacuum tube. The transition region corresponds to the
grid cathode spacing and has a capacitance analogous to the grid cathode
capacitance. For example, if a negative potential is applied to Ny, the

7 Theory indicates that a negligible number of holes will be generated in the steep field
region of J,, for voltages at which satisfactory operation may be obtained.

8 1f the grid is overheated, thermionic emission occurs; we are not interested in such an
unfavorable case, however.
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flow of electrons into Np will charge this capacitance (and the collector
junction capacitance as well) and will reduce the height of the potential
hill over which the holes must drift to reach the collector junction. Thus
for the transistor there is a region in which electron flow by one means,
that is, excess electrons, controls flow by another means, that is, holes.
However, in this case there will always be some recombination, and separa-
tion of the current to the same degree as in a vacuum tube will be difficult
to attain.

It is evident that for the p-n-p transistor structure two quantities y and 8
can be introduced as for the filamentary transistor. Since saturation
current is being drawn across J., we would expect that the change in col-
lector current will be simply @ = By times the change in the emitter current.
The resistances of J¢and J. will replace r, and 7, of the last section. The
value of 7, will be more complicated and will be an average of the resistance
from the contact on the n-type material to the junction f;. From the
approximate power gain formula, o’r./r we see that, since 7, is .much
greater than 7, for the applied voltage condition shown, there will be large
power gain, provided most of the holes can diffuse across the n-type
material so that « is not too small. If @ is nearly unity, the a-c base current
will be very small. In this event the transistor can operate efficiently, in a
manner similar to a grounded cathode vacuum tube, with the emitter
grounded and the input signal applied to the base.

In Section 4.5 we consider modifications of the p-#-p structure which will
lead to collectors with high values of a.

43 ON THE NATURE OF METAL SEMICONDUCTOR
CONTACTS

The type-A and coaxial transistors employ metal contacts for their
emitter and collector points. These contacts, like the p-z junctions just
described, may carry their current either as holes or as electrons, depending
on the circumstances. In this section we shall endeavor to describe on an
elementary level the phenomena occurring at metal semiconductor con-
tacts. In order to describe these matters in any detail, it is advantageous
to make use of the techniques of Fermi-Dirac statistics and energy bands.
For this reason, we shall give only a superficial discussion here; the reader
is referred to Chapter 12 in which a mathematical formulation of the statis-
tics of “‘space charge layers” is presented.!

The theory of rectification in germanium differs from the conventional
theory by taking into account both hole and electron currents. In this
section we shall lay particular stress on the hole emission aspect of the
forward current in #-type germanium and will also indicate in a preliminary

1 See also Torrey and Whitmer, Crystal Rectifiers, McGraw-Hill Book Co., New York, 1948,
for a general survey of point contact rectifiers.
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way how current amplification may occur at the collector. We shall
return to both these topics, using somewhat more advanced concepts, in
Section 4.5 where forming and the theory of high values for a are discussed.

The term emitter was first introduced by Bardeen and Brattain to
emphasize the role of the emitter contact in supplying a hole current for
the collector; at that time the evidence indicated that the important hole
flow occurred in a surface layer. The phrase Aole injection was introduced
to describe the penetration of holes into the body of the germanium.
Hole injection was proposed in connection with the theory of p-» junctions
and the p-n-p transistor and was independently observed by J. N. Shive
in connection with the double surface transistor.?

In order to explain how hole injection can occur when the emitter is a
metal point contact, we must consider the role of the surface states dis-
cussed with Figure 2.3. We shall first describe what occurs when the
point contact approaches and finally touches the surface. In order to
simplify the discussion, we shall suppose that the metal point is electrically
connected to the semiconductor. Then between the point and the semi-
conductor there will be an electric field arising from the contact difference
in potential. As the surfaces approach each other, this field becomes more
intense, the induced charge on the semiconductor surface arising largely
from a change in the number of electrons in the surface states. The
tendency of the surface states to stabilize the surface potential is so great
that only a very small change in potential in the interior of the semicon-
ductor is produced by the contact-difference-in-potential field even when the
metal is only one or two atomic diameters away from the surface. Fur-
thermore, it is quite probable that the germanium surface is covered to
a depth of one or two atoms with a layer of oxide or adsorbed atoms.
Consequently, even after the metal is brought into mechanical contact
with the semiconductor, the potential just inside the semiconductor surface
will be much the same as it was before contact was established. Further-
more, it is the potential just inside the surface that determines the rectifying
properties of the contact, and the argument just presented shows that this
potential is only slightly affected by putting the metal contact on the
surface.>  This argument has been used by Bardeen to explain why the
rectifying properties of a germanium surface are independent of the work
function of the metal used for the point contact.*

Although the potential at the surface of the semiconductor is independent

% For further historical details see Section 3.1, and J. Bardeen and W. H. Brattain, Phys.
Rev. 75, 1208-1225 (1949).

3 These matters are discussed by J. Bardeen, Phys. Rev. 71, 717-727 (1947), particularly
equation (23).

4 For additional data as germanium rectifiers see S. Benzer, J. App. Phys. 20, 804-815
(1949). References.
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of the work function of the metal which makes contact, the application of
voltage to the point comtact produces equal changes in the potential inside the
semiconductor. This apparently contradictory result is explained as
follows: Under thermal equilibrium conditions, the electrons in the surface
states adjust their numbers so as to produce the fixed potential at the
semiconductor surface by exchanging electrons with the interior of the
semiconductor and also with the metal; the end result, however, like all
equilibrium situations, does not depend on the nature of the mechanism
which permits it to be established. When a potentlal is applied to the
metal contact, on the other hand, the situation is not an equilibrium one.
Accordingly, the surface states acquire a charge which represents a com-
promise between attempts to get into equilibrium by electron exchange
with the metal on the one side and with the interior of the semiconductor
on the other side. If the metal is not in contact, so that electron exchange
with it is prevented, then the situation of Figure 2.3 prevails and the sur-
face gets into equilibrium with the interior and stays at the fixed potential
in respect to the semiconductor. When the metal is in contact, however,
the surface states exchange electrons very easily with the metal and
maintain the same potential in respect to the metal as they would under
equilibrium conditions. Thus the surface of the semiconductor comes to
a potential in respect to the metal which is independent of the work func-
tion of the metal; and this difference in potential then remains fixed so
that the surface of the semiconductor follows the potential changes applied
to the metal.

The theory proposed by Bardeen and Brattain for hole injection by
emitter points is based on the role of the surface states. According to
these ideas a large density of electrons is normally present in the surface
states. As a result electrons are repelled from the surface as shown in the
Surface States Diagram, Figure 2.3. The effect is supposed to be still
more pronounced than shown in Figure 2.3, however, and repulsion from
the region near the surface occurs not only for excess electrons (in the con-
duction band) but for some of the electrons in the valence bands as well.
Accordingly a concentration of holes, represented in part (a) of Figure 4.8,
is present immediately next to the metal contact. The situation is thus
in many ways similar to the p-z junctions described in the previous section.
If the junction of Figure 4.8 is biased in the forward direction, as shown in
(b), a major portion of the current may be carried by holes. Similar
considerations to those described in the last section have been used by
Bardeen and Brattain as criteria for a good hole emitter. In essence, if
the hole concentration near the surface is much higher than the electron
concentration in the interior, then most of the current will be carried by
holes. We shall return to a further discussion of this criterion in connec-
tion with the theory of “forming” proposed by Bardeen and Pfann.
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The reverse-current situation is represented in part (c). For this case
the applied potential is in the same direction as the potential produced by
the surface states and electrons are driven still farther from the point of
contact. The reverse current is composed in part of electrons which gain
sufficient energy thermally in the metal to get into the conduction band and
then flow into the semiconductor. This excitation process is similar to the
process of thermionic emission from a hot metal filament. However, the
work function for escape into the semiconductor is so much lower than
that of a metal that appreciable currents flow in the semiconductor at room
temperature. Another portion of the current consists of holes which are

CON/TACT EXCESS ELECTRONS
METAL SEMICONDUCTOR\\ HOLES DONORS /I
/

]

{a) EQUILIBRIUM (b)FORWARD {c)REVERSE

Fic. 4-8—Transistor Contact Diagram Showing the Nature of Rectification as It
Occurs in a Transistor.

formed thermally in the interior or on adjacent portions of the surface of
the semiconductor. These holes are thus generated in much the same
way and play much the same role as they do in a p-» junction. There is,
however, one very important difference. Since the emission of electrons
from the metal is limited by the work function they must surmount, the
electron emission will be enhanced by any lowering of the work function.
A hole flowing towards the metal attracts electrons and makes it easier for
them to escape. Thus the presence of holes promotes the electron flow.
We shall return to a further discussion of this process, which is one of the
ways of explaining why a; can be >1, in the section on forming.

Rectification occurs in the metal semiconductor contact of Figure 4.8 for
much the same reasons as in the p-# junction and we need not repeat the
arguments in detail here. The chief difference is that the recombination
and generation process taking place in the p-region of the p-» junction is
here replaced by the emission and absorption of electrons over the potential
barrier of the metal and by a similar process for holes.

In a practical rectifier, it is usually necessary to consider the voltage
drop in other parts of the unit as well as in the rectifying junction itself.
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In a point contact rectifier this additional resistance is referred to as the
spreading resistance. 'This may be visualized with the aid of Figure 4.9.
The barrier layer introduces a resistance between the metal point and the
semiconductor. The resistance of this layer is the junction resistance Ry.
In series with it is the spreading resistance Rg of the body of the semi-
conductor through which the current must flow in order to reach the metal
base. The latter contact is usually so large that its resistance, even if it
does rectify, is negligible; in general, the base contact is designed so as to

(b) ©

Fic. 4-9—The Equivalent Circuit of a Point Contact Rectifier.

reduce its nonlinearity. Most of the resistance Rg arises from the imme-
diate neighborhood of the emitter point where the lines of flow are con-
stricted; the value of Rg is thus a function of the area of contact. If the
contact is regarded as circular a disc of radius 4, then the spreading resist-
ance is given by the formula

Rs = — 0

where ¢ is conductivity of the material. If the disc is taken as a hemi-
sphere, the formula is Rg = 1/2wa.

According to ‘“‘one current” theories of rectification, which do not allow
for cartier injection, Rg is a constant. Rg can be determined experi-
mentally by applying large forward voltages so that Ry becomes small;
the limiting resistance then becomes Rg. It was found® that the limiting
resistance in the forward direction for germanium was much smaller than

5 R. Bray, K. Lark-Horovitz, and R. N. Smith, PAys. Rev. 72, 530 (1947). It was pro-
posed by these authors that this effect was due to a change in conductivity in high fields and
this effect was further investigated by R. Bray, Phys. Rev. 74, 1218 (1948). The high field
effect was shown to be due to hole injection from the terminals by E. J. Ryder and W. Shock-
ley, Phys. Rev.'75, 310 (1949), and this conclusion is further substantiated by the experiments
described in Section 3.1. It has also been proposed that the low spreading resistance may be
due to layer of surface conductivity of reversed conductivity type: J. Bardeen and W. H.
Brattain, Phys. Rev. 74, 230, 231 (1948).
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could be explained by the basis of the values of 4 and o. The explana-
tion in most cases is that hole injection in #-type germanium increases
the conductivity in Rg so that for forward currents both Ry and Rg are
decreased.

An additional effect of hole injection in #-type germanium rectifiers
results from the high density of holes present while a large forward current
flows: If the applied voltage is suddenly reversed, these holes are with-
drawn by the point and produce a current pulse. For some applications,
this effect can be large enough to cause damage to the unit.®

For purposes of the transistor theory, we have placed major emphasis
upon the behavior of the two forms of current in the rectifying contact.
There are, however, other features of theoretical interest which have been
developed in connection with the “one current” theory of rectifiers.
Except for the hole current, which is vital for our discussion, these theories
describe most of the features shown in Figure 4.8. These theories are
associated chiefly with the names of N. F. Mott” and W. Schottky.®
According to Schottky’s theory, interesting information about the space
charge layer, which is depleted of electrons, can be obtained by measuring
the complex impedance of the junction and interpreting it as a resistance
and capacitance in parallel. This capacitance can be shown to be that of
a layer of dielectric having the thickness of the space charge layer. As is
shown in Figure 4.8, the thickness of this layer varies with applied voltage,
being wider at reverse voltages and narrower at forward voltages. Meas-
urements of the capacitance as a function of applied voltage have been
reported by a number of workers and the results are generally in excellent
agreement with Schottky’s predictions.” More recently Bardeen has
analyzed the frequency effects in more detail and has defined the limits
under which Schottky’s approximate equivalent circuit should be valid.!®

It is possible to show that a simple interpretation of the voltage drop
across the barrier layer can be made in terms of the local conductivity.
For this purpose, the layer is divided into a set of thin parallel sub-layers.
These have varying electron densities and thus varying resistivities, and

8 An effect of this sort has been observed by L. A. Meacham and S. E. Michaels, Phys.
Rev. 78, 175-176 (1950) and has been called the “enhancement” effect by M., C. Waltz and
R. R. Blair.

7N. F. Mott, Proc. Roy. Soc. London 171A, 27-38 (1939); also N. F. Mott and R. W,
Gurney, Electronic Processes in Tonic Crystals, Oxford University Press, 1940,

8 W. Schottky and E. Spenke, #iss. Veroff. aus dic Siemens Werken 18 (3), 1-67 (1939);
W. Schottky, Zeits. fir Physik 113, 367414 (1939); 118, 539-592 (1942); F. Rose and
E. Spenke, Zeits. fiir Physik 126, 632-641 (1949). For a simple summary of Schottky’s theory,
see J. Joffé, Electrical Communication, 22, 217-225 (1945).

9 See the references to Schottky’s papers already cited and Torrey and Whitmer, Crystal
Rectifiers, McGraw-Hill, New York, 1948, and a paper compiled by S. J. Angello, “Semi-
conductor Rectifiers”, Electrical Engineering 68 (10), 865-872 (1949).

10 1 Bardeen, Bell Syst. Tech. J. 28, 428-434 (1949).
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the total resistance of the barrier layer (defined as applied voltage divided
by current) can be shown to be simply the sum of the individual resistances
of the sub-layers. The total width of the barrier and the resistances of
the sub-layers both increase with reverse voltage and decrease with for-
ward voltage, thus accounting for the dependence of resistance upon cur-
rent in the barrier layer. This picture can be put into quantitative form
and shown to be essentially equivalent to other approaches.

There is, however, a serious pitfall in the method just described; once
the idea of separating the junction into parallel layers has been considered,
there is a strong temptation to deal with each layer as a resistance and
capacitance in parallel and then to try to synthesize the junction impedance
by combining these parallel combinations in series. This proposal can be
shown to be entirely incorrect; the arguments, however, are not simple and
we refer the reader to the recent analysis of Bardeen from which it may be
seen that the correct solution bears no resemblance to such a series synthesis.

44 THEORY OF THE TYPE-A TRANSISTOR

4.4a. Relationship Between the Physical Picture and the Equivalent
Circuit. We shall now combine several ideas, some of which were developed
for simpler cases, in order to obtain a description of processes in the type-A
transistor and a derivation of its equivalent circuit. The ideas of chief
importance are:

(1) Hole injection by the emitter point;

(2) Current multiplication at the collector point with an intrinsic
alpha of a;;

(3) The relationship of the filamentary transistor to its equivalent
circuit.

We shall modify (3) in a suitable way so that it applies to the geometry of
the type-A transistor. As a result of this procedure we shall obtain a
physical picture of current flow in the type-A transistor together with an
interpretation of its equivalent circuit in terms of more fundamental
mechanisms. For this purpose we shall refer to Figure 4.10 which illus-
trates the current flow in this case.

The numerical values on Figure 4.10 are in approximate agreement with
typical data for a type-A transistor as represented in the sets of static
characteristics of Figure 2.6 except for the set of emitter voltages given in
parenthesis. These latter correspond, as is discussed in more detail later,
to increasing 712 in the equivalent circuit by 100 ohms so that a negative
input resistance is developed.

There are two principal differences between this structure and the
filamentary type: (1) The high collector resistance in this case is highly
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localized and arises from the junction resistance at the collector; the
major portion of the transit time for a hole is spent in a relatively low
resistance part of the unit between the emitter and collector. (2) The
electron paths from the collector are not restrained by the geometry and
flow over a wide range of directions.
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Fic. 4-10—Transistor Currents Diagram.

The figure has been drawn as if all of the emitter current consisted of
holes and all of these holes reached the collector. Actually we should
introduce factors v and B:

y = fraction of the emitter current carried by holes (for a p-type
transistor, the fraction carried by electrons);

8 = fraction of holes (or electrons for p-type) leaving emitter which
arrive at the collector.

For ease of reference we shall also repeat the definitions of the various forms

of a for a n-type transistor (for p-type transistor holes and electrons are

interchanged):

—(81,/d1 ) with ¥, = constant;

alpha for the current or voltage generators in the equivalent

circuit of Figure 2.7 (subscript e for equivalent circuit).

«; = “intrinsic «” = increase in collector current per unit increase of
hole current to the collector point at constant collector voltage;

i

[+

Ue
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1 — o; = evidently, increase electron current from collector per unit
increase in hole current.

In terms of 8 and v, the hole current reaching the collector will be

Ipc = —6’)’[5- (1)

The minus sign results from the sign convention that a positive current
corresponds to current into the unit. If each of these holes provokes the
emission of (a; — 1) extra electrons, an increase of collector current
amounting to

Ale = —pyle = (i — Dyl = —aifyl
= —al, 2)

will be produced by the emitter current. Thus the quantity « is really
the composite result of several effects and is given by the equation

a = afly. 3)
The total collector current will thus be
Ic:-[cO(Vc)—aIe (4)

where I.0(7,) is the function of ¥, which gives the reverse characteristic
of the collector point in the absence of emitter current. This equation
thus gives one relationship among the three parameters ¥, I, 1., which
together with 77, are used to describe the static characteristics.

In order to derive an equation involving ¥, we use methods similar to
those for the emitter point of the filamentary transistor, Section 4.1.
For that case we found that, according to equations (1) and (4),

]ezfe(Ve_yJ) (5)

where 75 was the potential in the germanium just below the emitter
point and was given by

Vi= (e~ I)R,. (6)

For the type-A transistor, Ry is a less clearly defined concept. As Figure
4.10 indicates, when I, is zero, the emitter will float at a potential cor-
responding to the equipotential which passes through it. For Figure 4.10,
this equipotential is separated from the base by 0.25 volt/0.8 ma =
312 = 300 ohms. When emitter current flows, the conductivity in its
neighborhood is modulated and the current paths distorted.

An exact treatment of this situation is very difficult and we shall accord-
ingly proceed by introducing the simplifying assumption of additivity of
potentials. This additivity assumption would, of course, be exactly ful-
filled if the conductivity modulation were negligible. For constant con-
ductivity, the potential, which we shall again call 7, immediately below



104 ON THE PHYSICAL THEORY OF TRANSISTORS [4.4a

the emitter point would be obtained simply by superposing the potentials
due to the currents I, and 7. individually. According to our previous
definition of Rp, the collector current will produce a contribution Rpl.
Similarly 7. will produce a potential R,’I.. The spreading of . over a
large area equipotential surface by the time it passes the emitter point will
cause Ry to be less than R’. In terms of Ry and Ry and the additivity
assumption we may write

Ie‘_“fe(Ve—'VJ) ’:fe(Vt—Rb/Ie_Rb]C)- (7)

This gives a relationship between /¢ and the two currents I, and I, and,
together with the equation for I, completes the set of two equations
required for the static characteristics.

The quantity f(¥c — ¥s) is not readily measurable since »y cannot
be directly determined. It is, however, straightforward to measure the
current voltage characteristic of the emitter contact by itself. This leads
to the relationship

I, =fe0(Ve) =fe[Ve - Rb/_féO(VE)] (8)

for the case of zero collector current. It is an elementary problem in
functional relationships to show that from these two last equations we
must have!

]e =fe()(Ve - RbIc)- (9)

This last equation was derived more directly by Bardeen and Brattain
by the following argument. If I = fo(V) when I, = 0, then when
I, # 0 an effective bias of +Ryl. is applied. To obtain a given emitter
current it is thus necessary to add sufficient extra voltage to overcome the
bias, and thus ¥ is replaced by ¥ — Ryl,. This argument is equivalent
to the one given previously and both depend on the assumption of additivity
for the voltages due to I and .. We have presented the more detailed
argument to show more completely how the additivity assumption enters
the theory.

The additivity assumption will be a good approximation even if consid-
erable conductivity modulation occurs. This modulation will have as its
principal effect a modification of the forward current characteristic of the
emitter point, and this effect will be most important in the immediate
neighborhood of the emitter point where the spreading resistance,discussed
in Section 4.3, chiefly arises. If the collector does not disturb the modula-
tion in this region greatly, then the contribution of I to the emitter voltage
will be largely independent of collector current. Furthermore, if the
modulation of conductivity takes place over a limited region near the

! The first equation states that there is a functional relationship between I and e — Rul.
writing this as I, = g(Ve — Rol;), we sec that, for I, = 0, we must have g(¥.) = fo(¥ o).
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emitter, the value of r, will not be greatly altered. If these conditions hold,
the additivity assumption will thus be well fulfilled. The additivity
assumption is actually found to be adequate only over limited ranges of
the currents, and 7} is found for one example to be about 1000 ochms for
I. = 0.1 ma and about 400 ohms for 7, between 0.2 and 0.8 ma.? For the
purpose of showing semiquantitatively the relationship of the physical
picture to the equivalent circuit, however, the additivity assumption is
satisfactory.

In terms of the functions already described the equations for the equiva-
lent circuit may be readily derived as follows: The collector resistance ra2
is obtained from

I, =I(Ve) —al, (10)
by finding the differential of both sides. We thus obtain
. ] . 1 d[co
e = T U — © — I e 11
’ T22 e ree AV (1

leading to
Ve = arogie + 7osic

rotie + ragic  (ro1 = arg), (12)

It

which corresponds to the right-hand branch of the equivalent circuit of
Figure 2.7(a). From the formula for emitter current,

I, =feO(V€ - Rblc), (13)
we obtain
) 1 Ty . 1 [afeo]
e =— 10, — — — = 14
! 11 ’ 11 o 11 aye I.=const ’ ( )
leading to
Ve = rrite + rigfe (P12 = 1) (15)

which corresponds to the left side of Figure 2.7(a).

These last equations show the relationship of the physical model of
Figure 4.10 to the equivalent circuit. The description of the equivalent
circuit has been given in some detail and will not be repeated here. We
shall, however, review the question of instability and negative input
impedance. The decrease in input impedance with increasing current was
shown in Section 4.1 to be due to decreasing resistance in the input contact
with increasing currents. This same effect occurs in the type-A transistor.
The positive feedback is again associated with having « greater than unity
and with the presence of a resistance ;.  If the collector is connected to a
zero impedance voltage supply, a negative resistance ar, appears in the

2 R. M. Ryder, Bell Laboratories Record 27, 89-93 (1949).
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input circuit in addition to 7;;. On Figure 4.10 we show the effect of
increasing #p by 100 ohms while leaving feo unaltered. The result is
to change ¥ by 100, or by —0.08, —0.16, and —0.28 volt for the cases
shown, the new values being given in parentheses. This increase in 7p
is sufficient to give the unit a negative input impedance in the range
I. = 0.4 to 1.0 ma as shown in going from (b) to (c) of Figure 4.10.

The theory of the double surface or coaxial transistor is, except for the
change in geometry, the same as that just described.

4.4b. Transit Time Effects. Transit time plays a very different role in
the filamentary and the type-A transistors. 'The high impedance region of
the output of the type-A transistor is the barrier layer which is about
103 cm thick and has a voltage drop of 25 volts. For such a layer the
transit time would be negligible compared to effects of interest in transistors.
If all holes followed paths of equal length from emitter to collector and took
the same time, the current generator in the collector circuit would be a
faithful but delayed replica of the input signal. If, however, holes travel
in unequal paths, as shown in Figure 4,10, then the hole current at the
collector will represent an average of the emitter currents at various pre-
vious times. If the important spread of times is comparable to one cycle
of an a-c input signal, there will be a great deal of cancellation and the gain
will be reduced.

In Figure 4.11(a) we indicate a means of estimating the transit time and
its spread. The current leaving the emitter is divided into several parts
each bounded by flow lines or surfaces. In order to deal with a simple
approximation, we neglect diffusion effects and modulation of the conduc-
tivity. Under these conditions a simple relationship exists between the
volume through which the current flows and the average transit time. This
is illustrated in (b). A current I flows through a tube bounded by flow
surfaces and having an area 4(/) where / is length along the tube. The
lines of flow in this case are readily computed from electrostatic theory.?
The field E and drift velocity v at position / are obtained as follows:

oAE = I, E =1Ijod, v=pE = ul/od. (16)
The length of time required to traverse a distance 4/ is then dt where
dt = dljv = aAdl/ul = (¢/pl)dV1 a7

where 4771 is an element of volume of the tube. From this it is evident that
the transit time is simply

= oV1/ul (18)
where V7 is the volume used by the current Z.

8 See Jeans, Mathematical Theory of Electricity and Magnetism, Cambridge at the Univer-
sity Press, 1927, Figure 19.
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It is evident that, for the lines of flow of Figure 4.11, there will be great
variations in transit time. As a rough approximation we shall take the
spread of transit times as being comparable with the transit time for elec-
trons in the group I;. This group will contain about half the emitter
current. From the figure the volume of its tube, which has the line from
€ t0 ¢ as A symmetry axis, is estimated as that of a cylinder S units long, and

Ip=IMA
+ ) IC "“415
= -4MA
[3 [}
s
14
Iy I3

i

Fig. 4-11—Spread in Emitter Current Paths and Geometry of a Tube of Flow.

about 0.68 units in average radius over half a circular cross section. Its
volume would thus be

vy = g 0.65)%8 = §3/2. (19)
The transit time would then be
eS8 c83
= = . 2
"= ol Wl (20)

If we insert the typical values:
I. = 1073 amp, u = 1700 cm?%/sec, ¢ = 0.2 (chm-em)™, (21a)
§ = 35X 10" cm (= 2 mils), (21b)
we obtain

0.2 X 125 X 107°
771700 X 1072

= (.015 microsecond. (22)

If, as supposed, the transit time spread is comparable to this, the output
would be nearly zero at 60 mc/sec and the three db point would be about at
something less than half this frequency or 30 mc.

This crude calculation, which was given only to illustrate the method,
predicts a cutoff frequency, about four times higher than that observed
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for a spacing of 2 mils, which corresponds to § = 5 X 107 em.  The dis-
crepancy is probably due in considerable measure to conductivity modula-
tion near the emitter point, which in effect will raise ¢ and increase the
transit time.

It is evident from this treatment that situations which constrict the
current paths between emitter and collector will tend to decrease the
transit time. One example of this sort is furnished by effect of applying
a magnetic field to a transistor in such a direction as to deflect holes which
start downwards in Figure 4.11 towards the collector. This will tend to
constrict the tubes of flow and to reduce transit time.*

45 ON THE THEORY OF “FORMING” AND HIGH
VALUES OF a

It was observed by Brattain in some of the earliest transistor experiments
that the performance of the transistor could be greatly improved by passing
large reverse currents through the collector point. Since that time a
considerable art has developed in connection with forming, and a number of
techniques for applying controlled currents and voltages for various lengths
of time have been used. We shall not attempt to survey these but will
restrict the discussion to (a) some general observations on the effect of
current polarity and conductivity type on the forming process and to (b)
some speculations about the nature of collectors which have high values,
say greater than 5, for a.

4.5a. The Forming Process. The forming treatments considered by
Bardeen and Pfann! involve applications of direct current in either the
forward or reverse direction for times of the order of seconds or less. The
extent of the changes caused by forming depends in part on the surface
treatment of the germanium and in part on the material used for the point
contact. For their investigations, Bardeen and Pfann used phosphor
bronze points on surfaces which had been ground and etched. They
found that the effect of forming can be systematized in tabular form as
shown on p. 109.

As Bardeen and Pfann point out, this array of data can be correlated
with the aid of one assumption about the effect of forming current:

The forming current leads to a change in height of the potential barrier
opposite 1o the change imposed during forming by the applied voltage. In
other words, if the point contact is negative during forming, so that the
potential barrier over which an electron must climb in going from the
semiconductor to the metal is increased, then after the forming voltage is
removed the barrier will be altered so as to be lower than its preformed

4 This effect was reported by C. B. Brown at the June 1949 IRE Conference on Electron

Devices at Princeton University, and in Phys. Rev. 76, 1736-1737 (1949).
17, Bardeen and W. G. Pfann, Phys. Rev. 77, 401402 (1959
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TaBLE 4.1 Errecr or Forming TREATMENT

Unformed Formed with point + Formed with point —
(4 current) (— current)
n-TYPE
(©) (d) (e)

Forward Current (point +): | Forward Current (point +):| Forward Current (point +):
Mostly holes, good emitter |  Little change, or larger Hole current smaller

Reverse Current (point —): | Reverse Current (point —)3| Reverse Current (point —):
Small, good rectifier Smaller Increased; collector

formed
P-TYPE
® (g (n)

Forward Current (point —): | Forward Current (point —):| Forward Current (point -):
Small, few electrons; poor| Like unformed Electron current in-
emitter creased, emitter formed

Reverse Current (point +): | Reverse Current (point +): | Reverse Current (point —):
Large, poor rectifier Increased Large

value. In Figure 4.12 this effect of forming is illustrated. The six cases
shown correspond to those of Table 4.1, and for each of these the effect of
forming is to alter the potential barrier in a sense opposite to that of the
applied forming voltage, which is also shown in the figure.

(c) The normal contact to #-type germanium is supposed to produce a
barrier layer with a rise in potential ¢s, which is determined largely by the
surface states and very little by the nature of the metal contact. Itis also
supposed that the barrier is not entirely uniform and is higher at some
points. At these points, the hole concentration is especially large and
when the junction is operated in the forward direction, the current is
carried chiefly by holes which flow into the germanium from these regions
of high concentration.

(f) Since the potential of the surface states is the same for both n-type
and p-type, the distribution of potential will be altered from (c) as shown
in (f) for p-type germanium. The low potential barrier for holes leads to
easy flow of holes and poor rectification and small electron emission. This
is in agreement with the known poor rectification usually found for con-
tacts with p-type germanium.

In (a) and (b) the fields present during forming are shown. The result-
ing forming effects can be interpreted by assuming that under forming
conditions the temperature and field are so high that motion of the impur-
ities results. The motion will then produce the changes in concentration
and potentials shown below (a) and (b), the result being that ¢; will tend
to be changed in a direction opposite to the applied potential.
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(e) The desired change for #-type germanium is to cause an increase in
collector reverse current. This permits it to set up an electric field suf-
ficiently large so that it can efficiently collect the injected holes.

UNFORMED FORMING CONDITIONS
+CURRENT ~CURRENT
—_— € —
%z (a) (b)
£o
L& SEMICONDUCTOR
ELECTRON EE 2 ~
ENERGY _._.T &
=)
DISTRIBUTIONS il g = 2w
5( +/7 W
=& =
5 SEMICONDUCTOR
J <t J —
DISTANCE, % DISTANCE,%

EFFECTS OF FORMING

n-TYPE n -TYPE n-TYPE
/] 7, 77, 7T
o | QLR mae | | o | ST ||
&\ R | | B ey L
z2|% XK z ® COD @ B
2 ZT
© o
[ @
O Sl
S w
b o
J
GOOD HOLE EMITTER GOOD COLLECTOR
p-TYPE p-TYPE p-TYPE
77777777777 (I 777 7 11170107
. {(f) 77 5 (9) P (h) L
e [ D ® @ b e o s % )
u Y “REVERSE —
] g %P CURRENT
z z LEAKAGE PATCH _|
2 2
5 7 e 8
Y “
o o
J K, —
GOOD COLLECTOR GOOD ELECTRON EMITTER

F16. 4-12—Interpretation of Forming by Bardeen and Pfann.

(h) In p-type germanium the reverse current is large enough without
forming, but the emitter current ordinarily contains too small a fraction of
electrons. By lowering ¢s as shown in (h), regions of high electron con-
centration are formed in front of the metal point and these can act as good
electron emitters.

4.5b. Interpretation of High Values of a. The hole current collected in
a type-A transistor causes an enhanced electron flow from the collector, as
is evidenced by the fact that « is greater than unity. It was mentioned in
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Section 4.3 that a values greater than one can be explained by the space
charge due to holes as they approach the collector point. This space
charge will have an effect similar to the positive ions of Figure 4.12(e),
whose concentration directly in front of the collector contact tends to lower
the work function for electron emission and thus to increase the reverse
current.

This theory of a was proposed by Bardeen and Brattain in their first
article.2  As we shall discuss below, it seems possible to explain a values as
high as 3 by this means. Values of & much larger than 3 have been ob-
served, however, and in order to explain these it is necessary to make major
revisions of the way in which the space charge of the holes is effective in
increasing electron emission. After discussing the theoretical limit of the
simple space charge theory, we shall describe the other theories.

We shall now show that the maximum value for a based on the simple
space charge theory has the same value (1 + 4) for a type-A transistor
that it has for a filamentary transistor and for much the same reasons. Let
us suppose that an increment of hole current A, produces by its space
charge an increment of electron current Al,. Now consider what the total
space charge situation would be if A7, = #AI, corresponding to a =1+ 4.
We shall show that A, cannot be this large. It is evident that A, will
produce a space charge p,, which tends to cancel p, due to Al,; evidently
pn cannot quite cancel p, because, if it did, there would be no net positive
space charge and hence no enhanced electron emission. However, if
Al, = bAI,, then p, will just equal p, since, for equal charge densities,
electron and hole currents would be in the ratio of #: 1. From this we
conclude that the hole current cannot produce an electron current as great
as bAI, and hence that e, or more precisely a;, cannot be as great as 1 + 4.
This argument depends upon three assumptions, tacitly made in the pre-
ceding discussion: (1) The ratio of mobilities is not affected by the high
fields near the collector point; (2) holes and electrons flow along the same
current paths (which may not be true if the junction is “patchy”); and
(3) holes have no trouble entering the metal and thus do not accumulate
in front of the metal on their way in. Although these assumptions are
probably not exactly fulfilled, it is unlikely that they introduce any sig-
nificant errors in the argument.?

It has also been proposed that the current multiplication may be due to
the generation of secondaries by fast-moving holes in the intense field near
the collector. There is a large amount of evidence against this theory.
In some cases high values of & have been observed at such low voltages,
say 5 volts, that secondary generation seems quite unreasonable. ~ Further-
more, if secondary generation were the important process, we should expect

27, Bardeen and W. H. Brattain, Phys. Rev. 75, 1208-1225 (1949).
8 Similar reasoning has been presented by L. P. Hunter, Phys. Rev., 77, 558 (1950).
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« to increase rapidly with applied voltage; in fact, this process would be
similar to avalanche production in dielectric breakdown and the value of
« would be expected to vary exponentially with voltage. This has not
been observed, and the data are much more consistent with the idea that
«; is independent of applied voltage, as if each hole provoked the emission
of a fixed number of electrons regardless of the value of the collector voltage.

{ 1
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F1c. 4-13—The “p-n Hook” as a Current Multiplier.

For these reasons, we shall reject the theory of secondary generation and
proceed to other theories based on the space charge of the holes.*

The space charge theories which we shall propose have the common
feature that in each case the holes are impeded in their progress to the metal
contact so that their space charge accumulates, thus having an enhanced
effect on the electrons.

In Figure 4.13 a transistor having a current multiplying collector region
is shown. This transistor differs from that of Figure 4.7 in having a “multi-
plying” region of n-type material, denoted by N,, directly behind the
p-type region, P.. The region P, is supposed to be so thin that electrons
entering it from N,, have a good chance of diffusing through it before com-
bining with a hole. Owing to the operation of the emitter, a hole current

4 W, Shockley, Phys. Rev. 78, 294295 (1950).
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is injected across J,, through N, and across J.. These holes tend to be-
come trapped in P, because of the “hook’ in potential which is produced
by the junction J.. We next consider the current flowing across [Jn.
If N,, is much more #n-type than P, is p-type, then most of the current
across J,, will be carried by electrons as discussed in Section 4.2. In
addition, the small width of P, permits electrons to escape to the left in
Figure 4.13 without recombining; this also tends to reduce diffusion back
to N,, and hence further to enhance the electron current. As a result the
electron current flowing across P, to the base will be much larger than the
hole current flowing across [, to N,,. Consequently [, acts as a current
multiplying junction and causes the hole current arriving at the collector
to produce a greatly enhanced electron emission. This explanation of high
a is referred to as the p-n hook theory.

It may be noted that a high degree of symmetry exists between the right
and left sides of Figure 4.13, except for the reversal of sign. This sym-
metry suggests another way of viewing the role of the hook region. This
region is substantially the same as an electron emitter N,, and a p-type
base P,. Hole arrival at P, biases this electron emitter forward and pro-
duces electron injection into P, and thence to J., which plays the role of a
collector junction in both cases.

The theory of the hook current multiplier is mathematically very
similar to the theory of the p-n-p transistor for which the basic mathe-
matical equations have been published elsewhere.?

Collector contacts which appear to function by the hook mechanism
just discussed have been produced by W. G. Pfann, A. E. Anderson, R. M.
Ryder, R. L. Wallace, and L. Valdes at Bell Telephone Laboratories.

Values of a as high as 20 or more have been obtained by this means.

From the previous discussion of the simple space charge case, a limiting
value of 1 + & was set for a;. If the value of 4 could be increased, it is
evident that the hole space charge would be relatively increased and «
would be raised. One possible process which might have this effect is that
of “hole trapping.” If a concentration of centers which had the property
of binding holes tightly could be produced directly in front of the collector,
then the holes would tend to accumulate there with a resultant increase
in space charge. If we suppose that each hole spends, on the average, a
fraction x of its time in these traps and a fraction 1 — x of its time moving
with normal mobility, then the net effect will be to reduce its mobility
by a factor 1 — x and to raise the effective value of 4 to beg = 4/(1 — x).
If (1 — x) is small, this process will lead to very large values of g and
hence to large possible values of a.

Of the various mechanisms proposed for high values of «, it appears that
the p-» hook is in best agreement with the facts and that considerations

5 W, Shockley, Bell Syst. Tech. J. 28, 435-489 (1949).
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based on this idea have good promise of leading to advantageously de-
signed units.

4.6. Phototransistors and Counters. The phenomenon of current multi-
plication at a collector and the phenomenon of optical generation of holes
and electrons have been combined by J. N. Shive in the phototransistor.!
The phototransistor is somewhat similar to the coaxial transistor,2® which
consists of a thin wafer of germanium with emitter and collector terminals
on opposite sides. In the phototransistor, the emitter is lacking and holes
are generated in the n-type germanium by light absorption. These holes
then flow to the collector and produce a multiplied photocurrent. Thus
if each photon produces one hole-electron pair and the hole in reaching
the collector provokes the emission of two electrons, a; = 3, then three
electronic units of charge will be produced per photon absorbed. The
ratio of number of electronic charges produced per photon absorbed is
called the guantum ¢fficiency; for the phototransistor this efficiency can be
greater than 1009, because of the,a; of the collector.

The quantum efficiency of the light absorption process itself has been
studied by Goucher.* In his experiment the change in conductance of an
n-type germanium filament due to illumination was measured. This
change should be proportional to the total number of holes present, the
formula being given in problem 3 of Chapter 3. The number of holes
present is equal to the rate of generation times the lifetime, as may readily
be established by the methods of Section 12.6. The rate of generation is
equal to the quantum efficiency times the rate of photon absorption, which
is determined from the energy and wave length of the light and the optical
constants of the germanium. In Goucher’s experiments the lifetime was
measured by hole injection techniques like those discussed in Sections
3.1d and 12.6. By comparing the change in conductance with the rate of
photon absorption, Goucher concludes that over a range of about 1.0 to
1.8 u each photon absorbed produces one hole-electron pair.

Collector junctions have also been used by K. G. McKay® to detect
holes produced in the germanium by alpha particles. He finds that the
sensitive region has a diameter of between 1073 and 1072 ¢cm and that the
maximum pulse height corresponds to the passage of 10° electrons. The
pulse width was less than 0.05 microseconds. McKay has also suggested
the use of large area p-# junctions for counters and such effects have been
observed by Orman, Fan, Goldsmith and Lark-Horovitz.®

11. N. Shive, Phys. Rev., 76, 575 (1949).

2. N. Shive, Phys. Rev., 75, 639-690 (1949).

3 R. L. Wallace and W. E. Kock, Elect. Engg., 68, 222-223 (1949).

4F. S. Goucher, Phys. Rev., 78, 646 (1950).

8 K. G. McKay, Phys. Rev., 76, 1537 (1949).

8 C. Orman, H. Y. Fan, G. J. Goldsmith and K. Lark-Horovitz, Phys. Rev., 78, 646 (1950).




Chap. 4] PROBLEMS 115

p-n junctions themselves are quite effective photecells.” It is not
necessary for the hole-electron pairs to be generated in the junction itself
to produce a current but merely near enough so that there is a good proba-
bility of the “injected” carriers diffusing to the junction. This probability
is determined by the diffusion length discussed in Section 12.5.

ProBLEMS

1. Assume that the probability that an injected hole recombines in time
dt is dt/tp. Show that the fraction of the holes injected at time ¢ which
are uncombined at time ¢ is exp (¢ — #)/rp. (See Section 8.3 for a similar
analysis of physically different problems.)

2. Suppose that in a filamentary transistor the emitter current is 7:(¢)
and consists of a fraction v of holes. If the transit time is 74, show that the
number of holes in the filament is

pror. = (/o) [ i) exp (¢ = )/l

and hence, using problem 3 of Chapter 3, that the increase in current is

it

dic(t) = (Vi — Vev(ue + pp)L7° [ i i(t') exp [(¢/ — £)/7pldt’

=y [ i) exp 6! = )/mlal

Show that this reduces to equations (18) and (19) of Section 4.1 for
8i5(2)/i(t) = ae = y(1 4+ 4)B when 7.(t) = i exp fwt.

3. A p-n junction has a resistance of R = 400 ohms for low voltages and
an area of 4 = 0.5 cm®.  Assuming that the current is carried chiefly by
holes and using (1) of Section 4.2, show that

(e/kT)psd = 1/R
so that

I, = kT/eAR = 1/394R = 1.28 X 10~ amperes/cm?®.

Assuming that the lifetime of a hole in the #-region is 100 microseconds,
show from (3) of Section 4.2 that this leads to
P = (Dprp) %/ ARen, = 1.2 X 10" em™

and that this concentration corresponds to a conductivity for holes of
3.3 X 10~% ohm™ cm™!. This value is much smaller than 2.1 X 1072

7 See footnote 1 of Section 4.2.
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ohm™ em™? corresponding to the conductivity of pure germanium at room
temperature and shows that the high resistance of a p-» junction arises
from the difficulty of forcing hole current to pass through #-type material
where there are very few holes to carry it. This subject is discussed more
fully in Chapter 12.
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CHAPTER 5

QUANTUM STATES, ENERGY BANDS, AND
BRILLOUIN ZONES

5.1 INTRODUCTION TO CHAPTERS 5, 6, AND 7

In non-quantum-mechanical treatments of conductivity, the current
carriers are thought of as small particles moving in random thermal mo-
tions on which is superimposed the effect of electric and magnetic fields.
Except for their smallness, the particles are imagined to have much the
same attributes as larger solid bodies such as are encountered in ordinary
experience, golf balls, for example. Although non-quantum-mechanical
theories have failed to account for many aspects of the behavior of elec-
trons, quantum mechanics, which includes wave mechanics, has succeeded.
Quantum mechanics brings with it a set of new concepts which include the
“wave function”, “probability density”, “energy level”, “spin”, “quantum
state”, and ‘“Pauli exclusion principle” — concepts which are based on the
development of the mathematical postulates of the theory.! In general,
a mastery of this mathematical machinery is achieved only in a post-
graduate course in physics. Fortunately, the results of the application of
quantum mechanics to the motions of electrons in crystals do not need to
be described in terms of the mathematical machinery itself but can be
presented, instead, largely in pictorial terms. It is the purpose of Chapters
5, 6, and 7 to develop this picture.

Before encountering the details of the argument, the reader will benefit
from a preview of the end result to be reached, together with some idea of
the route to be followed. There is, in the author’s opinion, a definite value
in traversing a route from which one may view, at least superficially, the
detailed processes used in developing a theory. The alternative would be
to skip these intermediate steps and to present, at once, the final physical
picture of the properties of holes and electrons as they emerge from the
theory. This alternative seems undesirable for several reasons. It gives
no idea of the fundamental concepts on which the behaviors of holes are
based and thus opens the possibility of error due to applying the picture
beyond its range of validity. Furthermore, from the purely scientific
viewpoint, a major theoretical triumph is achieved by showing how the

I Chapter 14 is an introduction to some of these ideas. It follows an unconventional course
and stresses analogies with transmission line theory.
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electrons, through the mechanism of hole conduction, can simulate the
behavior of positive particles.

The objective aimed at in this chapter and the next is a description of the
behavior of an electron in an ideally perfect crystal, in which the perfection
of the atomic arrangement is undistorted by thermal vibrations, impurity
atoms, or other causes. The electron is found to have certain permitted
modes of motion, quantum states. In these, it has certain energies and
velocities. A consequence of Schroedinger’s wave equation is, however,
that the classical relationship & = mv®/2 does not apply to electrons in a
crystal; and a further consequence is that the momentum is not equal to
mv. A “crystal momentum”, P, defined in Section 5.5 in terms of the wave
functions for electrons is introduced. As we find in Chapter 7, this vector
quantity satisfies the equation of 4P/dt = F when a force F acts on the
electron, a relationship which justifies calling it momentum in keeping
with Newton’s second law of motion. Unlike the momentum of a free
particle, the crystal momentum of an electron is, in a certain sense, limited
in range. Because of the repetitive or periodic property of the potential
field of the crystal in which the electron moves, we need not consider larger
values of momenta than those lying in a certain region, called the Brillouin
zone, in the three-dimensional P-space.

The energy and velocity of an electron are determined by the value of
P inside the Brillouin zone. The relationship is multivalued, however, so
that for a given value of P there will be a large number of possible quantum
states, each with its characteristic energy and velocity. The various sec-
tions of this chapter are used to develop these ideas, the mathematical
details being given in Part III. As a result we obtain a description of the
behavior of an electron in the crystal in terms of energy, velocity, and
momentum which are not related in the same way as they are in classical
mechanics.

As an aid to the reader in following or reviewing the argument, Figures
5.1, 6.1, and 6.3 have been prepared. These indicate the logical sequence
of the argument, and, where the steps involved have been presented in the
text, reference numbers are given. These three figures represent the
development of the Brillouin zone concepts of electron motion in a perfect
crystal? under the condition for which no external forces act.

When an external force acts on the electron, then, as a consequence of
the wave equation, it is found that the crystal momentum changes accord-
ing to the law® dP/dt = P = F. For the analysis of the conductivity and
Hall effect, forces due to electric and magnetic fields must be considered.
The arguments used in deriving the basic acceleration law are shown in

2 This requirement of perfection excludes thermal vibrations or impurity atoms and thus
eliminates the random processes which give rise to resistance.
3 We shall occasionally use the symbol - for “d/dt” or “a/8¢”.
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Figure 7.1 together with some of the consequences of this law. This
material is discussed in Chapter 7, which deals with the dynamics of
electrons in a perfect lattice.

The relationships of energy &, velocity v, and momentum P and the law
of force P = F lead to a determination of the effects of applied fields on the
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Fic. 5-1—The Brillouin Zone Method of Analyzing Bloch Wave Functions for
Electrons in Crystals.

motion of an electron. The situation is quite like that for the classical
case except for the different relationships between &, v, and P. These
differences are essential in explaining the processes in electrical conductors.
On the basis of the new relationships between &, v, and P, the behaviors of
an excess electron and of a hole are analyzed. The results justify the
description of holes and electrons as classical particles given in Chapter 1.
This is the principal aim of Chapters 5, 6, and 7.

In later chapters, the effect of random processes which introduce electrical
resistance and establish thermal equilibrium is discussed. These processes
are caused by disturbances that make the crystal imperfect and are thus
automatically excluded from Chapters 5 to 7, which are restricted to a
discussion of a perfect crystal in which each atom is free from thermal
motion and is exactly located at its prover lattice point.
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5.2 QUANTUM STATES, SPIN, AND THE
PAULI EXCLUSION PRINCIPLE

5.2a. The Nature of the Solutions of Wave Equations. An electron, as
is now generally accepted, is a very small particle whose laws of motion are
governed by Schroedinger’s wave equation.! Schroedinger’s equation
combined with the Pauli exclusion principle furnishes a satisfactory basis
for explaining most of the phenomena occurring in solid state physics and
chemistry. We shall discuss how its application leads to the theory of
energy bands, Bloch wave functions, and Brillouin zones. But first, as a
necessary introduction, we shall comment briefly on the quantum theory
for one-electron systems.?

When an electron moves in three-dimensional space (with its position
described by coordinates x, y, z), under the influence of forces which can be
represented by a potential energy U (x, ¥, 2), its possible energies & (not a
function of #, y,z) and modes of motion are described by Schroedinger’s

wave equation:
o (9® 02 LRV
e e R~ R ®

where 2 = Planck’s constant;
m = the mass of the electron;
& = the energy of the electron;
¥ = Y(x, y, 2), an unknown wave function,

We shall discuss the meaning of the wave function { below after we have
compared this equation to several other equations of mathematical phys-
ics.3 Thus, the wave equation for the scalar or vector potential of an
electromagnetic wave oscillating with frequency » is

2 (3P4 %A 94
m(“a‘,?+5?+3;2)+”“=°- @

In Figure 5.2 (f) to (i) we represent a stretched membrane (drum head)

1 This equation is known to be inexact but it applies well so long as the speed of the electron
is small compared to the velocity of light. It stands in relation to the Dirac equation as
Newton’s laws of motion do with respect to Finstein’s relativistic equations.

2 This treatment follows in an abbreviated form one presented by the author in “The
Quantum Physics of Solids 17, Bell Syss. Tech. J. 28, 645-743 (1939), a publication which is
available on request to the Publication Department of Bell Telephone Laboratories as Mono-
graph B-1184. Most of the material originally planned for II of the series, which was never
written owing to the interruption of the war, has been incorporated in the present book.

3 A more detailed discussion of the interpretation and solution of Schroedinger’s equation,
together with a comparison between it and an electrical transmission line, is given in Chapter

14.
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whose vertical displacement ¢ satisfies the wave equation

(P ),
41r20<5P+;9?)+V¢—0 ©)

where o is the mass per unit area, T the surface tension, and » is the fre-
quency. This equation has solutions, subject to the boundary condition
that ¢ = 0 on the rectangular boundary where the membrane is clamped,
only for certain frequencies called the “normal modes” or “natural fre-
quencies” of the drum head. These normal modes can be described by a
set of “quantum numbers” #, and 7, as shown in Figure 5.2. There is
some choice as to the exact convention most suitable for the quantum
numbers, and the ones selected for (f) to (i) have been chosen to conform
to those later used for Brillouin zones. These quantum numbers are
defined as the number of wave lengths of the vibration in each of the two
directions so that each is equal to 3 + 3 (number of nodal lines, heavy
arrows, in the figure).

Another system, whose normal modes may be familiar to the reader, is
the length of transmission line with choke coils across its ends (3). (This
structure and the simple harmonic oscillator of (d) and (e) are introduced
for use later in describing what happens when isolated atoms are brought
together to form a crystal.)

Part (a) shows the potential energy function €U for an electron in a
hydrogen atom. It is defined so that the energy is zero when the electron is'
infinitely far away from the proton; consequently, U = —¢%/r where ¢ is
the electronic charge and r the distance from the proton. When this
potential energy is put in Schroedinger’s equation, solutions for ¥ which
satisfy the proper boundary conditions (y = O when » approaches infinity
in this case) can be obtained only for certain values of & These solutions
are called “eigenfunctions” or “proper functions”, and the energies are
called “eigenvalues” or “proper energies”. It is found that these wave
functions, two of which are shown in (b) and (c), can be described by a set
of quantum numbers like those for the rectangular drum head. For ex-
ample, the 1 in 1s and 2 in 2s are each just one more than the number of
times the value of ¥ crosses zero as a function of 7.

A feature to be stressed about Schroedinger’s equation is that the
quantum numbers are not introduced in it as a special assumption.?
They arise in just the same way as those shown with the rectangular drum

4 There may be some choice about the numerical values assigned to the quantum numbers.
Thus in Figure 5.2, #; and 7, might have been chosen to be the number of half wave lengths
* along each edge, so as to avoid half integers. However, the point we wish to make is that no
special assumption is made in order to introduce quantum numbers in the first place. This
was not true of the old Bohr theory; in it quantum numbers were introduced as a special
assumption.
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head of Figure 5.2 or the normal modes of a resonant cavity. The mathe-
matical aspects of all of these problems are very similar and all involve
solving a differential equation subject to certain boundary conditions.
When the proper wave functions are examined in detail, it is usually found
that they are characterized by having a certain number of wave lengths or
half wave lengths in the x, ¥, and = directions (or in three other directions
depending on the boundary conditions). These numbers of half wave
lengths are thus naturally arising quantum numbers which can be used to
characterize the solution of the wave equation. For an electron in a
hydrogen atom, the most suitable quantum numbers are simply related to
the number of half wave lengths (or nodes in the wave function) in the 7,
8, and ¢ directions in spherical coordinates. For our purposes, however,
we do not need to refer to the detailed meaning of quantum numbers of
electrons in atoms.> We shall be, however, much concerned with the
quantum numbers used to describe the motions of electrons in crystals
and will give these an interpretation in terms of the wave lengths of the
wave functions involved (and thereby introduce the crystal momentum P).

In connection with the motion of electrons through crystals, we shall
later have occasion to compare the behavior of electron wave functions
with those of electromagnetic waves or mechanical waves. For this reason
the interpretation of the wave functions in both cases should also be
compared.

According to quantum mechanics, the wave function ¥ is a “probability
amplitude” (a phrase developed in quantum mechanics and not found else-
where), and the square of its absolute value, denoted by i\Hz = ltl.rzl =
$*y, is a probability density.® The probability density has the following
interpretation: the electron in its wave function is to be thought of as a
very small particle with extent negligible compared to the size of the atom.
It itself is not spread out over the volume occupied by the wave function.
However, in its motion it traverses the space about the atom spending
varying amounts of time in each region. The probability density at any
point is simply proportional to the amount of time the electron spends (per
unit volume) in a small volume about the point. In fact, the scale factor
of the wave function is usually so adjusted that ||247 is simply the
fraction of time the electron spends in the volume 47, As a consequence,
I\HQdV is the probability of finding the electron in the volume 4¥. (§

5 An elementary discussion of this topic is given in the Monograph B-1184.previously
referred to.

8 As discussed in Chapter 14, ¥ itself may be regarded as a mathematical aid used in
applying quantum mechanics to explain the behavior of electrons.  There is even less purpose
served in discussing what ¥ is a displacement of than in discussing what kind of an ether is
being stressed by an electromagnetic wave. For any set of values of %, 7,2 and ¢, ¥ is a
complex number which can be written as # + iw where « and w are real numbers. |¥ = the
positive square root of #% + w® and Yo = 4?2+ wl
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itself has thus the dimensions of cm™.) When these probabilities are
added up for all space, the sum is unity since the electron must be some-
where. A wave function which adds up to unity in this way is said to be
normalized.

Consequently, |?| gives the long-time-average charge-density distri-
bution produced by the electron. It is such average-charge densities that
are represented in Figures 1.1, 1.2, 1.4, and 1.14. (These take the place of
the Bohr orbits of the old quantum theory.) For many purposes, the
electron moves so quickly over its possible positions that this average
itself can be used. For other cases, such as for van der Waals’ forces, it is
necessary to take into account the fluctuations in position of the electron.
Other aspects of the electron’s behavior, such as its average velocity, can
be obtained from the wave function in ways discussed in Chapter 6 and
Chapter 14.

The probability density behaves in a way closely analogous to the energy
density of electromagnetic or mechanical vibrating systems, provided that
these have no loss, so that the energy of oscillation is conserved. For
these cases the voltages and currents (or electric and magnetic fields) and
the displacement and velocity are the amplitudes involved. The energy
densities are proportional to the squares of these amplitudes. There is an
important difference, however: In the electromagnetic or mechanical cases,
the solutions are usually obtained in complex form, and, for these cases, the
real part and the imaginary part of the solution are each individually
equally meaningful (in the physical rather than mathematical sense) as
solutions of the problem. FEach of these solutions shows a transfer back
and forth, twice each cycle, of electric to magnetic energy or of kinetic
to potential energy. For the quantum mechanical case, on the other
hand, the wave function is complex, its time dependence is of the form
exp (—2wi&t/h) where & is the energy, # is time, and 4 is Planck’s constant,
and neither the real nor imaginary part of ¥ is alone a solution of Schroe-
dinger’s equation. Only the complex wave function itself is. The value
of [{?| is thus independent of time and represents an unvarying probability
distribution.” This is a natural result, since unlike energy density, which
can exist in two forms, both for the electromagnetic and for the mechanical
case, there is only one form of probability density so that the possibility of
exchanging between one form and another is excluded. (There is, how-
ever, an exchange between the real and imaginary parts of the wave func-
tion {, which has a bearing on the wave velocities discussed later.)

In the cases of classical waves and in the quantum mechanical case as

7 While l\|12| is always independent of time for the normal mode solutions or eigenfunction
salutions of Schroedinger’s equation, there are other solutions in which I\Wl varies with time
and the probability distribution moves in space. Such cases are described in connection with
wave-packets, Section 6.3.
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well, it is sometimes of value to get a new wave function by adding together
other wave functions. This addition is permitted because of the super-
position principle which arises from the linearity of the differential equa-
tions involved. Considerations of wave functions built up by superposi-
tion are particularly helpful in understanding the bodily motion of the
electron through empty space or through a crystal and we shall return to
them in Section 6.3.

The important feature about the normal modes of any system, such as
the drum head, is that any free oscillation for that system can be expressed
in terms of them. Thus if the drum head is struck a sharp blow and then
allowed to oscillate, its motion will not be represented by a single one of
the normal modes of Figure 5.2 but instead by a combination of the effects
of several normal modes, each oscillating with its own proper frequency,
independently of the others, the total displacement being given by the sum
of the component displacements. A disturbance of this sort does not have
a single frequency and satisfies a wave equation containing a derivative
with respect to time:

T(% | 0%\ 9%
<6x2 + 6y2> ot 0. ®)

The mathematical expression for the solution of this equation is obtained
by adding together the solutions for the normal modes as foliows: If
$1(x, ¥), 2(x, y) - - - are normal mode solutions with frequencies fi, fo, " - -,
then a general solution of the time dependent equation is

$(x, 3, 1) = 411 (%, y) sin 22f, (¢ — 1)
+ Aoba(x, ) sin 2nfolt — £2) + - -+ (5)

where A1, Ay, - -+ and £, £5 - - - are constants. For each of these normal
mode terms individually, the time-dependent equation reduces to the one
containing f? and no time derivatives.

The corresponding time-dependent Schroedinger equation is

NS I Ak ih of
8xm <6x2 + ay? t az2> - W+ =0 ©)

It can also be solved by adding together eigenfunction solutions, each
multiplied by a time-dependent term.® We shall have occasion to con-
sider wave functions constructed in this way in connection with wave-
packets, which represent the motion of the electron through the crystal, in
Chapter 6. 1In this chapter, however, we shall deal only with eigenfunc-
tion solutions.

8 Such time-dependent terms are considered in Chapter 14 and are also used in Equa-
tions (2) and (5) of Section 5.4.
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5.2b. Spin and Quantum States. In addition to its motion through
space, the electron also rotates about its own axis. This rotation intro-
duces effectively a fourth degree of freedom and a fourth quantum number
— the “spin”. For reasons associated with the theory of relativity, the
fourth quantum number is found to have only two permitted values,
denoted by +3% and —3. In considering the cohesive forces between
atoms certain “‘exchange” effects associated with the spin are of great
importance. The spin of the electron also produces the magnetic moment
which is responsible for ferromagnetism. For the purpose of treating the
motions of electrons in semiconductors, however, we are concerned only
with the fact that the spin gives the electron an extra degree of freedom so
that it may move in accordance with a given wave function either with
plus spin or with minus spin.

We are now in a position to introduce the concept of a “quantum state”.

A quantum state describes a possible mode of behavior of an electron. It is
specified by stating its four quantum numbers, three describing the wave func-
tion and the other the spin.

So far our discussion has been concerned with the behavior of a single
electron. When several electrons are simultaneously present and exert
forces of electrostatic repulsion on each other, it is no longer exact to think
of each electron as moving in a constant force field, and, consequently, it
is not exact to speak of quantum states for individual electrons but instead
only of the quantum state for the system as a whole. However, when
large numbers of electrons are present, certain approximate methods may
be used. According to these, when one electron is being considered, the
effect of the others may be averaged to give a force field which is then taken
as fixed and definite. The motion of the electron in this average force
field is then investigated, and its quantum state is determined. The same
process is carried out for all the other electrons also. (This process is
usually repeated until a “self-consistent” solution is obtained: that s,
starting from a set of trial wave functions for the electrons, the force field
on each individual electron due to the other electrons is worked out. From
these force fields a new set of wave functions is found. This process is
repeated until a set of wave functions is obtained which produces a force
field which gives the same set of wave functions back again.) To the de-
gree of approximation used in the theory of semiconductors, this averaging
of the force field is accepted as satisfactory, and the behavior of each elec-
tron is described by specifying the quantum state it occupies.

5.2¢. Pauli Exclusion Principle. In terms of the quantum state concept
we may now state the “Pauli exclusion principle” which is a foundation
stone in the theory of matter.

The Pauli exclusion principle states simply that no two electrons may occupy
one and the same quantum state.



5.3] ENERGY BANDS IN CRYSTALS 129

If it were not for the existence of a law of nature of this form, all of the
electrons in complex atoms would drop to the lowest energy level and the
structure of the periodic table, the diversity of chemistry, and the reader of
this book would not exist.

In applying the Pauli exclusion principle, care must be taken to dis-
tinguish properly between quantum states. Thus the exclusion principle
does not require that, if one electron is in the lowest energy quantum state
in a particular hydrogen atom, then no other electron in the universe can
be in the same quantum state on another hydrogen atom. In fact, in a
gas of hydrogen atoms, we should expect half the electrons to be in the
lowest quantum state with one spin and the other half in the state of
opposite spin. This apparent paradox is resolved by noting that, when
we have two atoms, the quantum state scheme is essentially doubled. In
fact the wave functions around two nuclei require a new set of quantum
numbers. It is found, however, that, if the atoms are far apart, the wave
functions themselves are simply what they were for one atom and are ob-
tained twice over, once centered about one atom and next about the other.
In other words, two separate atoms do not have the same quantum states;
each of them has wave functions of exactly the same shape which are
located at different points in space and correspond to distinct quantum
states, one set for each atom.

The mathematical formulation of the Pauli exclusion principle is ex-
pressed by requiring that the wave function representing the system of
electrons be “antisymmetrical”’. The meaning of this term and various
other mathematical aspects of the Pauli exclusion principle are discussed
in Section 15.7. It is not necessary, however, to study these analytical
features in order to understand how the principle is applied in this and
the following chapters.

5.3 QUANTUM STATES AND ENERGY BANDS IN CRYSTALS

There are two principal procedures for introducing the systems of quan-
tum states in a solid. In one of these the average field method discussed
in the last section is used to determine the individual motions of the elec-
trons in the solid. It is necessary to use this method in describing the
momentum, acceleration, and velocity of charge carriers in semiconductors.
The other procedure traces the quantum states in the solid back to their
origin in the isolated atoms of which the solid is composed. We shall treat
the latter method first.!

Accordingly, we imagine that the N, atoms of the solid are arranged
perfectly on the crystal lattice in question but that they are separated by

!This treatment follows closely, in some respects, that of W. Shockley, “The Quantum
Physics of Solids 17, Bell 8yst. Tech. ]. 17, 645 (1939), Monograph B-1184,
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through a region where its potential energy is. greater than its total energy, as shown

in (). In this region its wave function is damped like an electromagnetic field in a
wave guide when the frequency is below cutoff.]
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many times the normal lattice constant so that there is substantially no
interaction between them.? The quantum state distribution for the
crystal is then essentially that of one atom duplicated N, times. That is,
each energy level corresponding to an atomic quantum state occurs N,
times, once for the corresponding quantum state on each atom. However,
as the lattice constant is reduced the situation changes and, when the atoms
are so close together that appreciable overlapping of the wave functions
between adjacent atoms occurs, the quantum state and energy level schemes
are profoundly modified. The result of this modification is shown pic-
torially in Figure 5.3. In parts (h) to (n) of the figure, the effect of inter-
action is illustrated in terms of a set of one-dimensional mechanical oscil-
lators. | The interaction between atoms is represented here by weak springs
coupling the oscillators together. When the coupling is zero, each oscil-
lator has its own normal mode of vibration, all of the same frequency. As
soon as coupling occurs, the vibrations can no longer be restricted to one
oscillator but extend throughout the system. However, if the coupling is
weak, each of the modes (i) to (n) will have almost the same frequency as
an isolated oscillator. As the coupling becomes stronger, the band of
frequencies spreads over a wider range.

A very similar behavior occurs for the atoms. As soon as the wave
functions overlap, the quantum states are no longer restricted to single
atoms but instead extend over the entire crystal as is suggested in (b) to (g)
of Figure 5.3. The energy levels corresponding to the quantum states split
in much the same way as do the frequencies of vibration for the system of
oscillators, In this way each atomic energy level leads to a éand of energy
levels or energy band in the crystal. This is illustrated in Figure 5.4 which
shows qualitatively the results predicted from Figure 5.3.

In the process of splitting, the total number of degrees of freedom of the
mechanicalgsaillators and the number of quantum states for the atoms are
invariant. Thus, for example, if the six atoms of Figure 5.3 contained
twelve electrons, so that the lowest quantum state of each spin was oc-
cupied, then there would still be just enough quantum states to accommo-

ate all the electrons in the band of energy levels produced by the interac-
tion; there would be six wave functions each giving rise, because of spin,
to two quantum states. '

For systems of larger numbers of atoms, there will be more wave func-
tions. However, the one of lowest energy will have a slowly varying
modulation wave like that of the dashed line in Figure 5.3(b) and the one

2 The crystal lattice describes the relative arrangement of the atoms. The diamond
structure of Figure 1.3 is common to carbon, silicon, germanium, and one modification of tin.
Ordinarily by “lattice constant” one means the value observed in nature. In this chapter,
however, we use “lattice constant” as a variable and “normal lattice constant” for the cne
observed in nature.
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of highest energy will be simply a continuation of (g) to more atoms.?

Hence the upper and lower energies for the electron wave functions, or
frequencies for the normal modes of the analogues, will be independent of
the length of the structure, provided that it contains a large number of
units. The conclusions just reached can be summarized in two basic

theorems for energy bands:
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Fic. 5-4—Dependence of Energy Levels upon Lattice Constant, or Frequency of
Vibration upon Strength of Coupling.

THE BAND WIDTH THEOREM: The width of the energy band arising from an
atomic energy level will be independent of the number of atoms in the crystal*
THE THEOREM OF THE CONSERVATION OF QUANTUM STATES: The number
of quantum states in the energy band will be the same as the number of atomic

- quantum states from which the band was produced.

There are no quantum states with energies between those shown in the
energy bands. For this reason the energy range running from the top of

3 We shall be intimately concerned with waves like (g), for which the wave length N is
twice the period 4 of the structure, in the remainder of this chapter. Such waves correspond

to the edges of the Brillouin zone.
4 1f we imagine that the lattice constant can be varied as shown in Figure 5.4, then the

width of the band depends on the lattice constant. It also depends upon the energy level
from which the band arose.
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one band to the bottom of the next is referred to as a forbidden energy band
or energy gap. The energy bands containing quantum states are referred
to as allowed energy bands; although, where confusion is unlikely to arise,
they are usually referred to simply as “‘energy bands”, as was done in the
two theorems.
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FiG. 5-5—Energy Bands for Diamond versus Lattice Constant.

* The unit in this figure is the Rydberg = 13.5 electron volts = } the atomic unit of
Appendix A.

For the case of carbon, the important energy bands arise from the
quantum states occupied by the valence electrons. These are denoted as
the 25 and 2p states and contain a total of eight quantum states per atom.
They are, therefore, half occupied in the isolated atoms. Each atom also
contains two electrons in the 1s state. However, these electrons have
their wave functions so compactly bound to the nucleus that no appreciable
overlapping between adjacent atoms occurs. They can be considered,
therefore, as unaffected by their being in the crystal. The energy bands
for carbon® in the diamond structure are shown in Figure 5.5. At large
iattice constants, the lower band is filled and the upper partially filled. At
smaller distances, however, the eight states per atom are split equally
between the two bands so that the lower band is completely filled. This
lower band corresponds to electrons in the valence-bond structure. To

5G. E. Kimball, J. Chem. Pkys. 3, 560 (1935).
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excite an electron requires enough energy to raise it to a quantum state in
the upper band. It is to be noted that the average energy of an electron
in the lower band at the actual lattice constant is much less than for the
free atoms. This drop in energy is associated with the “binding energy”’
of the crystal. A comparison of the total energy of a set of isolated
carbon atoms with that of the same atoms arranged in the crystal shows
that the loss in energy of the valence electrons makes the latter much more
stable. The energy required to pull the crystal apart into free atoms is
called the binding energy. For a valence crystal, like diamond, the
approximations employed in the energy band method of calculation are
probably less accurate than those dealing directly with the electron-pair
bond so far as binding energy is concerned. However, our main interest
in quantum-mechanical theory centers about the problems of electrical
conductivity rather than those of cohesion, and for conductivity the
energy band theory is not only the best approximation currently available
but apparently an adequate one as well.

54 BLOCH WAVE FUNCTIONS IN A PERIODIC
POTENTIAL FIELD

In the last section, we concluded that the energy levels of an array of
isolated atoms are split into energy bands when the atoms are brought close
together to form a crystal. By analogy with the behaviors of classical
systems, the theorems on band width and conservation of quantum states
were developed. We must next consider the wave functions obtained from
the viewpoint of their nature as solutions of the wave equation for an
electron moving in a periodic potential. This will form a basis for later
discussions of the velocity and acceleration of the electrons.

The solutions obtained for Schroedinger’s equation for an electron in a
crystal depend upon three attributes of the problem considered:

(1) The form of the potential field in which the electron moves: that is,
the value of QU (x, y, z) at each point in one unit cell of the crystal.
(Since the crystal is periodic the value will be the same in every
unit cell.)

(2) The size of the crystal.

(3) The boundary conditions at the surface of the crystal.

The nature of the problem, as discussed in Section 5.2, leads to the intro-
duction of a set of quantum members which can be used to specify the wave
functions and the associated characteristic energies.

In order to deal with running waves which carry current through the
crystal, we shall consider a type of boundary condition different from that
implicitly introduced in connection with Figure 5.3. We shall see below
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that this change in boundary conditions does not affect the theorem of the
conservation of quantum states.

The boundary condition shown in Figure 5.3 is one for which the wave
function vanishes at the ends of the one-dimensional crystal, We shall
refer to this case as “vanishing” boundary conditions. These boundary
conditions are mathematically equivalent to setting up infinite force fields
just outside the crystal which reflect the electron inwards. Under these
conditions the electron wave is a standing wave which can be regarded as
made up of two running waves. However, each of these running waves
individually, although it does satisfy Schroedinger’s equation for the
particular potential U, is not a solution which satisfies the boundary condi-
tions. The normal modes for the coupled oscillators similarly satisfy
boundary conditions for which the end points of the half-coupling springs
at the ends of the row have no displacement; the dashed modulating waves
show this behavior by having nodes at the end. For these boundary condi-
tions, the electron waves (b) to (g) do not carry any probability density
along the crystal nor do the mechanical oscillations (i) to (n) carry any
mechanical energy. In order to deal with eigenfunctions or normal modes
which support a flow, it is most convenient to use periodic boundary
conditions.

Periodic or c¢yclic boundary conditions amount to doubling the crystal
back on itself or arranging the coupled oscillators in a closed loop. Such
an arrangement is shown in Figure 5.6. The six oscillators are now mounted
below a rigid ring and are coupled together as for Figure 5.3. Some means
of constraint is assumed which restricts their motion to the vertical axis.
The lowest frequency of oscillation is that shown in (a). For this case, all
the bobs move together and the coupling springs are inactive. In (b) the
motion is given by a sine wave function which has one wave length around
the loop. In this case, the coupling springs between (2) and its neighbors
(1) and (3) exert a restoring force on (2) and cause the frequency of the
normal mode of (b) to be higher than that of (a). [In order to simplify
the diagram, the coupling springs have been omitted from the figure except
in (a).] There are two normal modes for (b), one for each direction of
travel of the sine wave. The frequency of these waves would be the same
as (j) in Figure 5.3; in fact, the standing wave (j) can be obtained by
allowing the right- and left-hand waves of Figure 5.6(b) to interfere.
These two waves are given the quantum numbers #, = +1 and #, = —1:
+ for the wave running towards +x and — for the wave running towards
—x, and 1 because the wave has one wave length around the crystal. In
accordance with this convention, we have the relationship &1/ = n,/4;
= n;/Nga, which we shall use later.

Part (c) of Figure 5.6 shows a wave with two wave lengths around the
loop, #, = +2. There are again two normal modes, with waves running
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to the left and to the right each having the same frequency as 1) of
Figure 5.3.

A critical condition occurs for A = 2, however. For this case, both the
right-going and left-going waves produce exactly the same motion of the
bobs, in this instance a very simple one in which the even-numbered bobs
have identical harmonic oscillations just 180° out of phase with odd-
numbered bobs.

We see that there are altogether six normal modes for the periodic
boundary condition of Figure 5.6, just as there were six for the “clamped
end” boundary condition of Figure 5.3. However, the proper frequencies
are somewhat different in the two cases.!

We must next consider the solutions of Schroedinger’s equation which
are analogous to the running waves for the coupled mechanical oscillators
just discussed. Some insight into the relationship between the two prob-
lems may be gained by writing the equation for the displacement produced
by a sine wave with wave length frequency », velocity ¢ (equal to W),
and unit amplitude in Figure 5.6. The displacement z of the bob at
position ¥, measured along the rim of the circle, may be written in any one
of several forms:

b4

I

sin 27 (; - vt) = sin (2x/\) (¥ — cf)

sin 2mv <’€—c - ;>- (1)

If we increase x by , that is, go from one bob to the next, the phase angle
in the wave is increased by 2ma/\. This effect is equivalent to replacing ¢
by t — a/c. In other words, the oscillation at one bob is just the same as
at the previous one except that it is delayed by a time a/c, the time required
for the wave to traverse one period of the structure. The velocity for such
waves varies with A, an example being given in Chapter 15.

It seems logical to expect that the solutions to Schroedinger’s equation
for waves in the crystal will give the same behavior in every unit cell,
except for a lag in phase angle corresponding to the time required for the
wave to progress from one cell to the next. The proof that waves of this
sort are eigenfunctions is due to F. Bloch? and the corresponding wave
functions are called Block functions.® For a one-dimensional crystal the
Bloch function is

Wa(x, £) = () exp [21”' (; — n )] . )

! Some problems bearing on these matters are given at the end of this chapter.
2 F. Bloch, Z. Physik 52, 555 (1928).
3 These subjects are discussed in more detail in Chapter 14.
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In this uy(x) is the same function in every unit cell; it is periodic so that
u)\(x + a) = U)\(x). (3)

It is thus seen that the behavior of s\ (x, #) is just the same at ¥ + 4 as at x
after a lapse of time given by

g =t or ¢=a/\n; 4)
in other words, the wave progresses to the right with phase velocity Ay.
The periodic function uy(x) and the frequency »\ both depend upon X\ as is
indicated by the subscripts. u\(x) is, in general, complex, with a varying
phase angle, although it becomes real for A = o, (For A = 24, u\(x)
varies as exp (—2wix/\) so that Y has a special behavior as shown in
Figure 5.7(c).) The energy &, of the wave function also depends upon A
and is related to the frequency », by the equation*

&\ = fm, €))

as may be easily verified by taking the partial derivative with respect to
time in the Schroedinger time-dependent equation. As is always true for
energy eigenfunctions, the value of Nl)\ (%, )% is i{’_am‘;‘%M"
M@W ‘from the fact that the only time dependent term
in (2yis exp (=2mins).] -
“The remainder of this chapter and the next will be devoted chiefly to
examining the behavior of the Bloch wave functions ¥ (x, ) and interpret-
ing the results. The value of N, or better that of +A/\ = kn,/4 =
hny/Nza, will be found to be a useful “quantum number” to characterize
the states in an energy band. Of particular importance is the significance
om\fﬁ&?’shown in Figure 5.3(g) and (n) and 5.6(d) for
which the phase difference is 180° for one period of the lattice or, in other
words, X = 2a. (These conditions determine the boundary of the Brillouin
zone discussed in the next section.) ’ ‘
Figure 5.7 (p. 140) shows some running waves of the Bloch form. In
order to give an idea of how the wave function ¥ and probability density
|¥|? depend on time and distance, we have plotted the real and imaginary
parts of ¥ and also [{s|? in the figure. As described in connection with the
figure, we see that each wave gives the same probability density at every
atom. However, the real and imaginary parts of ¢ individually have the
type of wave motion along the crystal required by equation (2) of Section

4 This famous equation, which is now a part of the general formalism of quantum mechan-
ics, was first discussed by Planck in 1900 in connection with thermal equilibrium of electro-
magnetic radiation in a cavity. In 1905 Einstein used it to interpret photoelectric emission
by supposing that light quanta or photons deliver energy in units of A» to electrons in the
photoelectric effect.
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5.4, As we shall see in Chapter 6, this wave motion is associated with
electron current, the electron being, in a sense, carried along by the wave.

In terms of these running waves, the condition A = 24 can be given special
significance. This is a condition for which the behavior of the running
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Fic. 5-8—Phase Relations between Reflected Waves, Showing Critical Condition
for N = 2a,

wave degenerates to that of a standing wave. Furthermore, the same
standing wave is obtained whether waves running to the right or to the
left are used initially. [Discussed in connection with Figure 5.6(d).]

Because of the fundamental importance of the limiting condition N = 24
in the theory of Brillouin zones, we shall use, in addition to the discussion
of the wave behavior of Figure 5.7, another argument leading to the same
result. In Figure 5.8(a) we imagine that a wave I whose sinusoidal
behavior corresponds to N = 24 is traversing the crystal from left to right.
As it passes by each plane of atoms, a certain fraction of it is reflected
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F1c. 5-7—The Wave Function
¥ = up(x) exp (iPx /h).

This figure shows the behavior
of wave functions for three quan-
tum states of the lowest energy
band and some wave functions for
higher energy bands.

(a) shows a relatively long wave
length, N = 74. Its real and im-
aginary parts (al) consist of a part
with period 2 multiplied by a sinu-
soidal part. The sinusoidal parts
arerelated assineand cosine. This
results in the same value of |2 =
(Real §)% + (Imag. {)? in every
unit cell (a4), since sin? 4 cos? = 1.
Furthermore, the phase angle of
the wave function,f =tan™! (Imag.
Y /Real ¥), varies linearly with «x,
(a3), and goes through 360° in 7
lattice constants. As # increases
from 0 to #, the phase angle for
any fixed value of » changes by
80= —2mms, (a3). Thisisequiva-
lent to moving the wave function
along (80 /27) wave lengths., The
phase velocity is, therefore, (56 /
277') /11 = )\V)\.

(b) shows a wave with A =
(7/3)a, only slightly larger than
the critical value, A = 2. The
scale 1s enlarged to show the more
rapid variations. Again, the sinu-
soidal waves for real and imaginary
parts of Y are 90° out of phase at
the centers of the atoms. However,
between atom centers, the phase
angle changes irregularly, tending
to remain constant near each atom
center, then changing abruptly be-
tween atoms where the wave func-
tion is small. If u,(x) were real
or had a constant phase angle, the
phase angle for ¥ would vary
linearly with (x). However,u, (x)
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is, in general, complex and can be
taken as real only for A = 0.

(c) For X = 2a, the wave func- a6 N
tion is multiplied by —1 (a phase WJ\
change of 180°) between one atom L5
and the next. For the case shown,

<
/7 IMAGINARY PART
X / OF WAVE FUNCTION

on i i |—> D1STANCES REAL PART
the wave function is entirely real (b1 OF WAL P eTioN

(at another time it will be entirely
imaginary due to theexp (—2mwiryt)
time dependence). The transition
of phase by 180° occurs discontin-
uously at the midpoint between
atoms where the wave function
vanishes so that the phase is in-
determinate. These discontinuities
have been drawn like a left-handed
screw in keeping with (a) and (b).
However, exactly the same be-
havior of ¥ would result if the dis-
continuities were like a right-
handed screw. Thus, the same
behavior of the wave function for
A = 24 results for waves running
initially in either direction. In
other words, this is a standing
wave.

(d) shows some real and im-
aginary parts of wave functions
for electrons in the conduction

band for metallic sodium as com- a
putedbySlater.* Weincludethem =~ o
to show that numerical calcu- (d) 4 )ﬂ / [Q\ > /
lations of wave functions of the \ 4 N _\ 4 W
Bloch type for higher energy =7 ~-7
bands have been carried out. The N — FEAN VAR
heavy sine-wave lines have the (d2) N <A Y
wave length \ of the Bloch waves, N NG N
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which the Bloch wave functions \\ / \ 7“ '\\N AN
would transform if the potential ~7 ~ = bt
energy function QU were diminished N O ( \\ O\
to zero. (d4) T \] Y * \\
\ \_ 7 A\
*J. C. Slater, Rev. Mod. Phys. 6, - N - > . et - \’,
209-280 (1934). . \ N Pl Y AN /
5) \ PN /' AR foa L
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giving rise to reflected waves R to Ry from planes 1 to 4, which have been
arbitrarily selected for study. As is seen, each reflected wave starts 180°
out of phase with the wave of the preceding plane. However, by the time
it has reached the preceding plane it has lost an additional 180° and is in
phase. Hence the waves R; to Ry are all in phase and do not cancel one
another. The situation is quite different in (b), where I has a wave length
different from two lattice constants. Then the waves R; to Ry are out of
phase and cancel out on the average. As a consequence of this, it is pos-
sible for the wave in (b) to traverse the crystal with only a small fraction of
reflected wave present. However, the wave in (a) will build up a reflected
intensity just equal to the incident intensity; the reflected waves will then
be converted to the incident wave by additional reflections just as fast as
the incident is converted to reflected. However, this situation of waves
of equal intensity moving in both directions is mathematically equivalent
to a standing wave. Hence it is impossible to transmit energy or electrons
through periodic structures such as crystals, or coupled mechanical or
electrical oscillators, when the wave length is twice the period of the
structure.

It is evident that, if we start with modulation waves of very long wave
length and make them shorter and shorter, a natural limit is reached
when A = 24. In fact, this range of wave lengths just covers the states
in the energy band. However, in order to discuss the extension of the
ideas presented here to three dimensions, and to lay the foundation for
discussing velocity and momentum, we must introduce a suitable means of
describing the modulation waves in three dimensions. The quantum
number required for this purpose plays the role of momentum for electrons
in crystals and is introduced in the next section.

Before discussing this next topic, the very close analogy between the
results discussed here and certain electrical and acoustical problems should
be mentioned. In electrical filter systems made of identical networks con-
nected in tandem, there are frequency bands of transmission and bands of
attenuation. The frequency at which the transition between these occurs
corresponds to the condition X = 24, the currents in adjacent networks
being 180° out of phase. Between the transmitting bands the electrical
signal decays exponentially from network to network through the filter.
The electron waves corresponding to energies lying outside the energy
bands are similarly attenuated and cannot be made to fit the periodic
boundary conditions we have considered. They are of interest in connec-
tion with the surfaces of semiconductors, however, but these are matters
not covered in this text. The béhavior is entirely similar for acoustical
lines having periodic structures.’

8 For a general treatment of such problems see L. Brillouin, #ave Propagation in Periodic
Structures, McGraw-Hill Book Co., New York, 1946,

L’“jJ\)




5.5] THE “CRYSTAL MOMENTUM” P 143

5.5 BRILLOUIN ZONES AND THE CRYSTAL MOMENTUM P
AS A QUANTUM NUMBER

In this section we shall introduce the crystal momentum in place of
the wave length as a means of characterizing the Bloch wave functions.
The crystal momentum, which we shall shortly define, has many con-
venient properties: Used as a quantum number, its allowed values are
described by a very simple scheme, and the critical condition N = 2a is
simply represented in terms of the crystal momentum. In Chapters 6
and 7 we shall use it in studying the velocity and acceleration of electrons.

We shall first deal with a one-dimensional case. For this we define the
crystal momentum P, along the x-axis as follows:

P, = xk/\ (1)

(4 for waves running to the right, — for waves running to the left).
Since 4 has the dimensions of action, P has the dimensions of momentum
(mass X length/time).! Furthermore, if the periodic potential were
imagined to diminish so that the Bloch functions became simply plane
electron waves in free space (which quantum mechanics interprets as
electrons moving freely with constant momentum), then equation (1)
would give the correct relationship between momentum and wave length.
In the crystal, however, the electron is acted upon by forces so that 1t
cannot be considered to have a definite momentum and for this reason we
have used the phrase “crystal momentum” to indicate that Py is not the
momentum in the ordinary sense. (We shall use capital P for crystal
momentum, small p for ordinary momentum.) However, since P, has the
attribute, discussed later, of changing at a rate equal to the applied force,
it may be used as a momentum for many purposes.
In terms of P,, the Bloch wave function takes the form

Yp.(x, 1) = up,(x) exp [(2mi/h) (Pox — &p)). )

We must next ask what values of P, are allowed. The answer to this
question depends on the size of the crystal and the boundary conditions.
We shall consider a crystal consisting of N, unit cells of length 2 and thus
being 4, = Nia long, and shall assume periodic or cyclic boundary condi-
tions equivalent to supposing that the crystal is bent around until the first
and last atoms become near neighbors.  As a consequence of this boundary
condition, the wave function at positions x and x + A, must be identical
because these two values of x are really the same place. In other words,
¥ must be periodic with period 4,. Since up,(x + a) = up,(x), we also

1This result may be recalled from the Heisenberg uncertainty relation, which specifies

that the uncertainties in momentum and position satisfy the inequality ApAx 2> h/4w where p
represents ordinary momentum.
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have up (¥ + 4,) = up,(x). Consequently, for yp, to be periodic with
period A4, we must have

exp [(2mi/h)Po(x + A.)]=exp [(2ni/h)Pyx], or exp [Qni/h)Ped]=1,
or (2wi/h)P,A, = 2win, 3)

where 72, is an integer and is, in fact, simply the number of wave lengths of
Y around the cyclic crystal (as shown in Figure 5.6). This leads to the
condition

P, = nsh/A, or P, = h/4,. 4)

Thus the allowed values of P, are spaced 4/A, apart. This situation is
represented in Figure 5.9(a). The P,-axis extends to ==4/2a2 corresponding
to the limiting condition A = 24 previously discussed, and, as explained,
the wave functions at these two limiting points are identical. As we shall
show later, values of P, lying outside the range —#4/24 to +A/2a are
equivalent to P,-values lying in this range. This region of P, space, which
includes a complete set of non-equivalent points and is centered at P, = 0, is
defined as the one-dimensional Brillouin zone. Its chief importance is that
we need not, for most purposes, consider any P,-values lying outside of the
Brillouin zone since all the eigenfunctions for the one-dimensional crystal
are contained in the zone. In fact, because of the reciprocal relationships:

(Size of Brillouin zone) « (Spacing in crystal)™
(Size of crystal) « (Spacing in Brillouin zone)™

there are just as many allowed P,-values in the Brillouin zone as there are
atoms in the crystal, this being the Brillouin-zone statement of the theorem
of conservation of quantum states. This theorem is proved by noting that
the number of atoms in the crystal is 4,/a = N, and the number of allowed
P,-values is (h/a)/(h/A4s) = Az/a = N, also. Taking into account the
two values of spin leads to 2V, quantum states in the Brillouin zone.

The dependence of energy on P, has also been indicated for two energy
bands in Figure 5.9(a). From this it is possible to make an energy level
diagram for the allowed P,-values as is indicated on the right edge of (a).
These same energy levels are plotted in (b), which is drawn to a reduced
scale to show how the energy bands arise in the Brillouin-zone picture.

The actual computation of energy as a function of P, can be carried out
for idealized one-dimensional crystals, and treatments will be found in any
modern text on the electron theory of solids and in some on quantum
theory.2 For electrons in actual crystals, however, laborious numerical
calculations are, in general, required and only a limited number of cases
have been dealt with.

2 A simple case is treated in Chapter 14.
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We must next extend the Brillouin-zone concept to three dimensions.
For this case P, is replaced by a vector denoted by P, having components
P,, P,, P.. Again we shall find that there is a limited volume in P-space
to be considered which is bounded by planes corresponding to N = 24.
This limited volume of P-space, which may be defined as the most compact
volume about P = O containing all the non-equivalent values of P, is the
three-dimensional Brillouin zone. Only values of P within this zone need
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be considered and of these only a certain allowed set gives eigenfunctions

satisfying the boundary conditions. We shall show that, for this allowed

set, the theorem of conservation of quantum states once more applies.
For three dimensions the Bloch function can be written as

‘I’P:Pypz(x) Y52 l) = uP:c.Py.Pz(xJ Ys Z) X
exp [(2wi/B) (Pox + Py 4 Pz — &p,p,p.t)]

= Yp(r, 1) = up(r) exp [2mi/h)(P - 1 — &pt)] (%)
where the second form makes use of the vector notation
P =iP, + jP, + kP, (6)
r=1ix+jy+ k (7
P.r=Px+Py+ Pz (8)

where i, j, and k are the customary unit vectors along x, y, and 2 axes (this

use of i should not be confused with i = v/ —1). We shall suppose that
we are dealing with a simple cubic crystal with lattice constant a. (Later
we shall comment on the modifications required for the treatment of a more
complex crystal, such as the diamond structure.) By arguments similar
to those used in the one-dimensional case,® it can be concluded that wave
functions with P, = %/2a correspond to standing waves in the x-direction
and that, for any arbitrary fixed values of P, and P, P, = %/2a and
P, = —4/2a lead to the same wave function. Thus the Brillouin zone
in (P., Py, P;) space or P-space is a cube whose bounding planes are
P, = +h/2a, Py = £h/2a, P, = +4/2a. For more complex lattices, a
more general method of attack must be used to find the Brillouin zone.
However, in all cases the boundaries of the zone are determined by standing
wave conditions like A = 22. The planes which do the reflecting, however,
will not necessarily be perpendicular to the x, y, and z axes and one must
consider other possible planes. A procedure for doing this has long been
used in studies of X-ray diffraction in crystals. According to this theory,
the X rays will produce Bragg reflections from certain planes in the crystal
when the wave vector (P/A) satisfies conditions equivalent to X = 2a where
a is the spacing between the planes in question. In this way certain
boundaries in P-space are found which enclose the Brillouin zone for more
complex lattices. We shall not consider these more complicated cases,
however, since it suffices for the present purposes to deal only with results
which are generally valid for all types of lattices, and these can be illustrated
adequately with the simple cubic model.

3 For details of these arguments, which involve new mathematical complexities rather
than new physical ideas, the reader is referred to F. Seitz, Modern Thoery of Solids, McGraw-
Hill Book Co., New York, 1940; A.H. Wilson, Tke Theory of Metals, Cambridge at the Uni-
versity Press, 1936; and Section 14.8.
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If the simple cubic crystal consists of a rectangular parallelepiped with
edges of length A, A,, and A4, parallel to the x, y, and z axes, we may find
the allowed values for P by using periodic boundary conditions as before.
In this case it is hard to imagine bending the crystal around in such a way
that the faces on opposite sides are brought together as shown in Figure
5.9(c). However, mathematically, the requirement that the wave func-
tion be periodic with periods 4, Ay, and 4, in the three dimensions can
easily be formulated. Experience in problems of this sort in theoretical
physics has shown that the results are, in general, independent of the
exact boundary conditions used at the surface of the sample.* For this
reason, we shall not try to justify the periodic boundary condition on
physical grounds but will indicate that substantially equivalent results
would be obtained if we made the wave functions vanish on the boundary,
corresponding to a potential field which holds the electrons inside the crys-
tal. If we require that the wave function take on the same value at x and
x + A, we conclude by the same reasoning as before that

P,=wnh/Ad, or 8P, =~rk/A,. 9)

Since the values of y and z are left unaltered by this increase in #, they do
not affect the reasoning. Similarly, by dealing with ¥ and 2 individually,
we conclude that

P, =mnh/A4, or 8Py =h/4, (10)
and

P, = nh/d, or 6P, = h/A,. (11)

Thus the allowed points in P-space fall on the corners of a rectangular or
orthorhombic lattice for which the unit cell has edges 4/ A, A/ A, h/ A4 so
that there is a volume of 43/ 4, 4,4, or &3/ V of P-space for each unit cell or
allowed wave function. The reciprocal relationship between crystal and
Brillouin zone in three dimensions thus is:

(Size of Brillouin zone) o« (Unit Cell of Crystal)™

(Dimensions of Crystal) « (Dimensions in Array of allowed
points in Brillouin zone)™.

We shall have occasion to deal with the lattice of points in P-space
defined by equations (9) to (11) in other connections as well and shall use
the phrase basic P-lattice of the Brillouin zone to describe the array distinct
points in the Brillouin zone specified by these equations. '

This lattice and the reciprocal relationships are represented in Figure
5.10. The allowed points in the P, = O plane are shown in greater detail
in Figure 5.11(a). Here each distinct allowed point is shown by a solid

4 We shall have further occasion in Chapter 7 to discuss the unimportance of the exact
boundary conditions employed.
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dot; the open circles like Py on the edges of the Brillouin zone give wave
functions identical with those of other points like P;. Thus it is seen that
there are just as many allowed points as there are rectangles in the plane
(that is, there is one rectangle to the upper right of each allowed point).
For three dimensions there are also just as many allowed points as there
are elementary volumes 43/7. This is a general result, as is shown in
Section 14.8, and may be expressed in the form

density of allowed points in P-space = V/A°. (12)

Since the volume of the Brillouin zone is (%/2)%, the number of allowed
points is (k/2)® X (V/F*) = V/a®. Thus we have the Brillouin-zone for-
mulation of the Theorem of Conservation of Quantum States:

The number of allowed points in the Brillouin zone is equal to the number
of unit cells in the crystal.

Tt is thus easy to see one relationship between the Brillouin zone and the
energy band. If the crystal is assembled by varying the lattice constant
as discussed in Section 5.3, then each atomic energy level spreads into a
band of energy levels; the number of quantum states, usually one per
atom, for each spin, then give rise to 2N, quantum states in the band,
where N, is the total number of atoms. These 2N, quantum states corre-
spond to the N, allowed points in the Brillouin zone combined with the
two possibilities for the spin. If there is more than one atom per unit cell,
the situation is somewhat more complicated. In this case the energy level
will probably split into several overlapping bands each requiring a Brillouin
zone to represent it. We have discussed the derivation of the theorem for
the case of a simple cubic crystal. The theorem as stated is, however,
actually applicable to any crystal lattice, provided that “unit cell” is
properly interpreted. The unit cell is the smallest parallelepiped which 1s
typical of the crystal and, if repeated over and over parallel to itself, would
generate the entire crystal. For the diamond structure of Figure 1.3, the
unit cell is a slanting parallelepiped containing two atoms and having a
volume of one fourth the cube shown. The four electrons per atom in the
valence-bond band of Figure 5.5 thus correspond to eight electrons per
unit cell or enough to fill four Brillouin zones completely, using both spins.
Thus the energy bands of interest in diamond-type crystals will correspond
to Brillouin zones whose epergies overlap in complicated ways. We shall
indicate in Section 7.5 that certain approximations are made in treating
this case. Some other features relating to overlapping energy bands are
discussed in Chapter 12.

The energy of the wave function depends, of course, on the value of P.
In Figure 5.11(b) the dependence of energy upon P is illustrated for a
hypothetical case, lines of equal energy being shown for points on the
P, = 0 plane exhibited in Figure 5.10. As is seen, the figure has a high
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degree of symmetry, consistent with the symmetry of the simple cubic
model being considered. The minimum exergy lies at the center of the
figure and the maximum value at the corners. The contours in Figure
5.11(b) are spaced at approximately equal energy differences. In the
three-dimensional diagrams, the constant energy lines are surfaces, nearly
spherical ones near the center with more complicated shapes for larger
energies. Finally, near the corners of the cube, the surfaces once more
become nearly spherical. It does not always happen that the lowest
energy occurs at the center. As we shall see later, so far as the behavior
of the electrons as current carriers is concerned, the minimum may equally
well be at the corners and the maximum at the center.

It has been stated that points on opposite faces of the Brillouin zone, for
example Py and P, in Figure 5.11, for which the crystal momenta differ by
AP, = xh/a, AP, = AP, = 0, have the same wave function. This means
that increasing P, beyond %/24 is equivalent to re-entering the zone on the
opposite face and proceeding inwards. This result can be shown to be
correct by dealing mathematically with the Bloch wave functions. It can
also be illustrated for the analogous case of the coupled oscillators of
Figures 5.3 and 5.6. In Figure 5.12, three modulating waves are shown
moving past a group of harmonic oscillators according to a scheme of
presentation similar to Figures 5.3 and 5.6. However, in this case only
the bobs of the oscillators are shown. Part (a) shows the conditions
P, = x4/2a or 1/\ = 1/2a. The two waves are drawn as though they
progressed to right and left in successive diagrams. In part (b) we show
a wave with P, = (A/24) + £(%/2a), that is, a momentum lying beyond
the edge of the zone by 16% per cent. Its wave pattern is also shown
as though it advanced to the right reading down the page. In addition,
on part (b) we show P, = —(4/22) + L(%/2a); thatis, a wave moved in
from the left edge of the zone by the same amount that the other lies
outside to the right. Since it is characterized by a negative value of Py,
this wave is to be considered as moving to the left. As is seen, the motion
of the oscillator bobs is the same for the two waves, showing that proceeding
beyond the zone boundary is equivalent to entering it on the opposite side.
We could thus equally well use for the zone the boundaries P, =0, P,=4/a,
P, =0, P, = k/a since the points in this area would give the same set of
modulation waves as Figure 5.11(a). Such a rearrangement has advan-
tages for some purposes and is employed in Section 7.5.

P-space is periodic in the sense that adding =4-4/a to any component of P
gives rise to the same wave function. For this reason points outside of the
Brillouin zone are always equivalent to points inside the zone and it is
never really necessary to consider P values lying outside the Brillouin zone.
One Brillouin zone, however, gives only enough quantum states to accom-
modate two electrons per unit cell; whereas most crystals contain many
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more than two electrons per unit cell. This difficulty may be solved by
using the same points in the Brillouin zone many times over, simply
specifying in each case which energy band is concerned. Another pro-
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cedure, which is more complicated, is to use the remaining portions of
P_space outside of the Brillouin zone for other bands. There is, in fact, a
definite procedure for doing this and the more complicated volumes
involved in P-space are referred to as the second, third, etc., Brillouin
zones. (The dashed lines of Figure 5.7(d) are associated with this pro-
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cedure.) For our purposes, however, it is simplest to use only the first
Brillouin zone, which is the one already described. For a given point in
this zone there is a definite modulation wave, exp (27iP - r/4) superimposed
on the atomic wave function. By using the same modulation wave but
different atomic functions, wave functions in the different energy bands are
produced. Some examples of these have been shown in Figure 5.7(d).
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5.6 ENERGY BANDS FOR METALS, INSULATORS, AND
SEMICONDUCTORS

There are characteristic differences between the energy bands of metals,
insulators, and intrinsic semiconductors in terms of which their electrical
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conductivity can be understood. As we shall see later, when all the
quantum states of a Brillouin zone are occupied, the zone cannot participate
in conduction. In the case of a metal, the energy bands overlap in such a
way that, as occupied by the available electrons, some Brillouin zones are
left partially filled. On the other hand for pure diamond, one set of
Brillouin zones is occupied by valence electrons, and the next higher set
(the conduction band) is left entirely empty. The energy gap between
them is so great that electrons are not thermally excited, and diamond,
therefore, has either completely filled or completely empty Brillouin zones
and is an insulator when in thermal equilibrium at room temperature. On
the other hand, germanium has its valence-bond bands and conduction
bands so close together that it would exhibit appreciable conductivity at
room temperature even if pure. The diamond form of tin, called gray tin,
which is stable below room temperature, is probably either a metallic
conductor with overlapping energy bands or at least an intrinsic semi-
conductor of very high conductivity. The energy gaps for tetravalent
elements are thus thought to be:

Carbon Tint Tin
(Diamond) Silicon Germanium Gray Metallic  Lead
6to7ev 1.1l ev 0.72 ev O.lev (overlapping bands)

The donors and acceptors, which can bind holes and electrons as described
in Chapter 1, give rise to energy levels which lie in the energy gap. A
quantum-mechanical treatment of these energy levels and their relationship
to energy bands is given in Chapter 9. ‘

The energy level schemes for the various cases just discussed are shown
in a conventional form in Figure 5.13. We shall return to a discussion of
the statistical distribution, under thermal equilibrium conditions, of
electrons among such energy levels at the close of Chapter 10.

PROBLEMS

1. Carry out an analysis, similar to that for Figure 5.6, for four oscillators
and for eight oscillators. Discuss the differences that would be introduced
if the number of oscillators were changed to an odd number.

2. The patterns shown in Figure 5.6 resemble traces seen on oscillo-
scopes. Show that, if the horizontal plates are driven at frequency f and
the vertical plates at nf, patterns like the dashed lines of Figure 5.6 will be
obtained. If the y plates have also a small signal at f and 90° out of phase
with the horizontal plates, even the perspective will be simulated. What
will happen if the y frequency is slightly different from nf?

3. Assume a force constant for the vertical spring and an initial tension

1 G. Busch, J. Wieland and H. Zoller, Conference on the Properties of Semiconducting
Materials, University of Reading, July 10-15, 1950.
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in the coupling springs; assume also that the masses of Figure 5.6 slide on
frictionless vertical rods. Work out the frequency of the waves for small
amplitude disturbances.

4. Compare qualitatively the distribution of allowed frequencies for
“clamped end” boundary conditions and periodic boundary conditions,
for an odd number of coupled oscillators.



CHAPTER 6

VELOCITIES AND CURRENTS FOR ELECTRONS
IN CRYSTALS

This chapter serves to complete the Brillouin zone description of the
properties of the Bloch wave functions; with it we conclude the general
description of the behavior of electrons moving in the periodic field of a
perfect crystal in the absence of external fields. The new aspect added
here is the velocity of motion associated with each quantum state in the
Brillouin zone. In a text designed exclusively for physicists, this topic
would be treated principally on the basis of the postulates and operations
of quantum mechanics. While in our treatment we refer to these quantum-
mechanical methods, we emphasize primarily the analogy with other
problems involving wave motion. At the end of this chapter we are
within two steps of the elementary treatment of conductivity: In Chapter7
we consider the effect of electric and magnetic fields on altering the behavior
of electrons, and in Chapter 8 we introduce the idea of random processes
which produce resistance.

6.1 THE VELOCITY AND CURRENT CONCEPTS

When an electron is moving in the crystal in the manner prescribed by
one of the Bloch wave functions, it has an “‘average” velocity of motion
which gives rise to a current. In fact, for each quantum state in the Bril-
louin zone there is a certain average velocity, the one which an electron
would have if it occupied that state. Itis the aim of this chapter to discuss
the relationship of this average velocity, which will be denoted by the
vector symbol v, to other properties of the Bloch wave functions.

As described in connection with Figure 5.7, the complex Bloch waves
flow through the crystal. However, the electron probability density is
the same in every unit cell so that no apparent flow can be detected by
examining the distribution of the probability density for the electron in
space. This brings us to the important matter of interpreting the meaning
of the Bloch wave function in terms of more familiar descriptions of the
clectron’s behavior. We shall find that the theory indicates that the
electron is actually moving through the crystal with a definite average
velocity. It should be pointed out at once that this involves no contradic-
tion with the uniform probability distribution. In a number of other
cases, the entity which flows may show no shift in its density distribution.
For example, a rotating flywheel may look perfectly stationary, yet the

156
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iron which is uniformly distributed around the rim is actually moving.
The energy density along a power line may be uniform and unchanging,
vet power flows. (An example of this sort is presented in Section 15.3.)

The Bloch function represents a state of motion for the electron in which
it is equally likely to be in any unit cell of the crystal while at the same
time it has an average velocity of motion through the crystal. The reason
that this motion does not carry it out of the crystal after a time is a mathe-
matical one associated with the periodic boundary conditions. These cor-
respond (as shown in Figure 5.9(c) for the one-dimensional case) to a
cyclic crystal in which flow out of one end is equivalent to flow in at the
other. Thus the electron flows indefinitely through the crystal.

This flow can be expressed as a current density in a form useful for later
conductivity considerations. Thus, in the one-dimensional case, if the
average velocity of motion is v,, then the electron traverses one cycle about
the loop in a time A4/v,. This means that the, charge —e¢ of the electron
flows around the loop v,/ A times per second and hence that the current is
I = —ev,/A = (—e/A)v,, the second form showing that the current can
be expressed as charge per unit length, (—e/4), times average velocity.
In three dimensions, the current density vector or charge per unit area per
unit time can be expressed similarly as

I=(=¢/V), 1

that is, as the charge per unit volume times the vector velocity.! The
derivation is as follows: If the electron has an average vector velocity v
with components v,, vy, v,, then it makes v,/ 4, traversals in the x-direction
per unit time; on each traversal it carries —e across the end face of the
crystal giving rise to a current of —ev,/ 4. Since the end face has an area
A A4, the current density in the x-direction is given by the formula

I, = (_wx//{x)//{y/{z = (—e/V)s, (2)

where V' = A4,4,4, is the volume of the crystal. Similar calculations for
the y and z axes then establish the general formula. Actually, the argu-
ment given here, which serves to introduce the formula for current density
and to illustrate the idea of the average velocity, is in a sense the reverse of
the one logically employed in the theory to find the average velocity. This
will become apparent from the method of attack used to evaluate the
average velocity. B

6.2 THE POYNTING VECTOR OR DENSITY-FLOW METHOD

Since no motion can be detected by computing the change in the prob-
ability density, other methods of determining the velocity must be em-

1 Even before the electron crosses the surfaces, it produces a displacement current given by

Equation (1). See, for example, W. Shockley, J. 4pp. Phys.,9, 635-636 (1938).
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ployed. These are directly available in the theory of quantum mechanics,
and a definite procedure is given for calculating the average current flow
from a wave function. We shall not present this method here'® but shall

SCHROEDINGER’S PERIODIC EQUATIONS OF PERIODIC
EQUATION POTENTIAL ELECTROMAGNETIC STRUCTURE
(AssuMED) THEORY '
MATHEMATICAL MATHEMATICAL MATHEMATICAL MATHEMATICAL
DERIVATION ANALYSIS DERIVATION ANALYSIS
y
EXPRESSION POYNTING VECTOR WAVES IN
FOR ELECTRON WAVE FUNCTIONS OR VOLTAGE PERIODIC
FLUX OR IN CRYSTAL TIMES CURRENT STRUCTURE
CURRENT FOR POWER FLOW
MATHEMATICAL MATHEMATICAL
ANALYSIS ANALYSIS
Y y
AVERAGE SPEED OF ELECTRON SPEED OF FLOW OF ENERGY
vy = 65(Png.Pz)/3Px v
OR ) v= 3 1
v =vp& (P) ) (}\)
PROBABILITY AVERAGE] _ ENERGY SPEED | _
pensiTy | X |veocity] = |CURRENT oensiTY | X | oF Fow| = | POWER
ELECTRON THEORY ELECTROMAGNETIC THEORY

Fic. 6~-1—Comparison of the Calculation of Average Speed for an Electron with the
Calculation of Flow of Electromagnetic Energy.

describe instead its analogue in terms of power flow in electromagnetic
theory. The relationship is shown in Figure 6.1. In Section 15.3 the
procedure is actually carried out in detail for an artificial lumped-constant
transmission line having no loss. For this case, the energy per unit length
is computed for a line with a particular running wave, the running wave
being found by the procedure leading to “waves in periodic structure”

18 Derivations are given in Sections 14.3 and 15.4.
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shown in the figure. The equation for power flow is then simply obtained
by evaluating the current flowing from left to right at some point on the
line and multiplying this by the voltage and proper phase factor. This
familiar expression for power flow is analogous to the Poynting vector for
electromagnetic waves or to the quantum mechanical expression for
average current. We next argue that the power flow along the line is due
to the flow of its energy density. Consequently, if its velocity of flow is o,
all the energy in a length o of line flows past a point in unit time, and,
therefore, power is energy density times speed of flow as shown in Fig-
ure 6.1. If the line has no phase distortion, that is, all frequencies travel
at the same speed, or, in other words, there is no dispersion, then this rate
of flow always turns out to be the velocity of the waves. However, if the
speed of the waves depends on the wave length, then the power does not
flow at the same speed as the waves but instead at a speed given by the
formula

_ dv .
A/

1

v

This expression equals the speed of the waves only for the case of constant

wave speed for which ’
dv de(1/N) .

VSRV, S

(2)

v = ¢/N so that

where ¢ is the speed of the waves.

When the analogous procedure using the expressions for electron current
density are employed as indicated in Figure 6.1, precisely the same formula
is obtained for electron probability density-as for electrical energy for the
one-dimensional case. However, since the relationships

=86 and P, = A/\ 3)
apply, we can rewrite the formula in the form

_ av _ a6 .
=aa/N T ap,

(4)

This formula is identical in form with that obtained classically, for which
p = my and & = mv®/2 = p?/2m so that d&/dp = p/m = v. However,
the physical meaning is different, since, for electrons in a periodic potential,
& does not equal p?/2m.

There is a fundamental explanation for the fact that the same formula
v = dv/d(1/)\) is obtained for both electromagnetic waves and electron
waves. This explanation is based on the use of wave-packets and group
velocity, topics which are discussed in the next section.
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Fic. 6-2—Motion of a Minimum-uncertainty Wave-Packet in Free Space.

The product of uncertainty in position and momentum at ¢ = 0 for this packet has
the minimum value Ap Ax = A/4r permitted by the Heisenberg uncertainty relation.

(a) Plots of the real part of the wave function y(x,#) for several instants of tim:.
Since this is a one-dimensional wave-packet, ¥ has the dimension of cm™# The imagi-
nary part of the wave function is similar in shape and ¢ (x,#) is shown by the envelope
lines. The velocity of the group is twice as great as the phase velocity of the waves
which compose it: while the crest of the waves advance one wave length between 4
and #,, the group advances two wave lengths. The packet is composed of momenta
varying by about 8%, from the mean value. This spread in component velocities
causes the packet to spread appreciably in length during the time from f to #;, the
higher momentum components gathering near the front of the packet and giving the
wave function a shorter wave length while the lower components similarly gather at
the rear.

(b) The continuous progression of the lines of constant complex phase angle is
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Fic. 6-2—Continued. '

shown by the dashed lines. When the angle is a multiple of 2, the wave function is
real and positive, corresponding to the crestsin (a). The line for maximum probabil-
ity amplitude advances with twice the phase velocity and the lines at which the
probability amplitude falls to 1/¢? of the maximum are seen to spread out. The bend-
ing back of the lines of constant phase near ¥ = 0 for the larger times corresponds to
motion to the left, which results from the fact that there is some probability that the
electron will have a negative momentum.

The average velocity corresponds to 1 electron volt of energy with a velocity 5.92 X
107 cm/sec and a wave leggth of 122X 1078 cm. The value of Ax at = 0 was
arbitrarily chosen as 12.2 A in computing the packet. This gives Ap = A/4wlx =
p1/4m where p; corresponds to 1 ev. The spread in momentum increases the energy
from 23/2m to (p}+ Ap?) /2m = pi(1 + (1/161%))/2m = 1.0063 ev.

For earlier times than ¢ = 0, the packet also spreads out in a way symmetrical to
that for later times. The theory of this wave-packet is discussed in Section 15.5.
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6.3 WAVE-PACKETS AND GROUP VELOCITY

We shall next interpret the velocity formula in terms of wave-packets
and group velocities, both of which are useful concepts in wave mechanics.
Accordingly, we suppose that instead of sending a single frequency down
the transmission line we send a pulse signal at a certain carrier frequency.
This pulse may be regarded as the result of superimposing a number of
single-frequency waves. The pulse localization results from the construc-
tive interference of these waves at the location of the pulse and the destruc-
tive interference elsewhere. In general, these waves travel at varying
speeds, and thus the interference pattern changes. As a result of the
shifting of the interference pattern of the group of single-frequency waves,
the pulse travels at a speed different from that of the individual waves.
The terminology used to describe this situation is as follows: The pulse is
said to be a wave-packet, which is made up by the constructive interference

of a group of waves. Each of these individual

AVERAGE VELOCITY waves moves with its own velocity called the
o LR For phase velocity, 'whereas the packet moves with
ONE P=Pg the group velocity. 1If all the waves of the group
lSEU,ON ss travel with the same phase velocity, then the
wave-packet moves with them with unaltered
AVERAGE VELOCITY X . L
OF ELECTRON IN shape. However, if the phase velocity varies with
A PaEs Wit the wave length, then the interference pattern
P =Po shifts and the wave-packet may go either faster or
Jsecrion 63 slower than the waves which build it up. When
GROUP VELOCITY FOR the mathematics of this interference problem is
WAVES WITH P = Po analyzed (see Chapter 15), it is found that the
Jsecion 2 group velocity is given by the formula
av d& dv
V= = —
1) dP v = . 1
IETEY) A(1/N) W
OR
v = Vp & (P) The reason that the same formula results from both

the power flow calculation and the group velocity
Fie. 6-3—Outline of calculation may be understood from the follow-
Argument Used to De-  j,0 argument: In the case of the wave-packet the
rive Velocity of Elec- . . . . .
tron from Group-veloc- SRETBY 1s’locahzed in a certain region of the trans-
ity Concept. mission line, hence it must flow at the same speed
as the wave-packet. On the other hand, when the
wave-packet is passing a certain point on the line, the situation locally is
much the same as for the state of steady power flow, and energy will be
flowing past at the speed determined from the steady flow calculation.
Hence the speed of flow of the steady-state power must be given by the
group-velocity formula. (The equality for the artificial line is given in
detail in Section 15.3.)
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This same procedure may be used to analyze the behavior of the Bloch
waves. The argument is outlined in Figure 6.3. In order to determine the
velocity in one Bloch function, we combine it with others of approximately
| the same value of P;. In this way we get a localized wave-packet. (Such
a wave-packet for an electron is shown in Figure 6.2, and its properties are
discussed in the associated text.) We then argue that since all the wave
functions are very similar (that is, only a small difference in their P,
values), they correspond to about the same average velocity for the elec-
tron, and thus the packet which represents the average of their effects must
also have the same velocity. It is then a straightforward mathematical
problem to evaluate the group velocity from a study of the interference
patterns. The result is quite general, and, as derived in Section 15.2, it
applies to any set of interfering waves. It agrees, of course, with that
obtained by the density-flow method. We shall next discuss the conse-
quences of the formula for a one-dimensional case.

6.4 VELOCITIES FOR QUANTUM STATES IN
BRILLOUIN ZONES

As pointed out previously, the relationships & = Av and Py = AN
enable us to transform the group velocity equation to

v = d&/dP, 1)

for the one-dimensional case. This result is in agreement with the classical
Hamiltonian expression. In the classical theory of analytical dynamics
the energy is written in the form J((p;, g;) where the quantities ¢; are
coordinates and the quantities ; are momenta. For a single particle the
coordinates and momenta are conveniently chosen as

g1 = X, g2 = Y, g3 = %
mdx mdy dz
= — — —_ = gy
P i P i’ P dt

Other choices can be made for special problems, such as the problem of
planetary motion. The relationship between classical and quantum
mechanical Hamiltonian expression is discussed in Section 14.3. Hamil-
ton’s equations of motion are

N . oW
and pi= — .
V d¢:

¢ =

‘ D

For the case of an electron moving in one dimension in a constant potential
energy “Up, both quantum and classical mechanics give kinetic energy =
2%/2m, so that the total energy is & = Vo + p?/2m, and the group velocity
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is v = p/m or p = my, the classical result.)] The value 0g, although it
contributes to the frequency of the Bloch wave, through » = &/, does not
affect the group velocity. In other words, the group velocity is independent
of the zero selected for the energy scale whereas the phase velocity is not.
Since only the group velocity contributes to the current, this variability
of the phase velocity is, however, not important.
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Fic. 6-4—FEnergy and Velocity in Brillouin Zones.

For definiteness, some of these results are shown graphically in Figure 6.4.
Here energy and group velocity are plotted for points along the P;-axis.
The upper diagram shows the energy for two energy bands, and the lower
diagram shows the velocity for the upper energy band. In both cases
dotted lines show the periodic dependence of energy and velocity on P,
points outside the zone being equivalent to points inside obtained by adding
or subtracting 4/a from Py.

1 We use p for momentum in the ordinary classical or quantum-mechanical sense and P for
the crystal momentum,
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In three dimensions, it is necessary to find a vector velocity with com-
ponents similar to v = d&/dP, for one dimension. These are shown in
Chapter 15 to be

v, = 06(Py, Py, P,)/0P; (2a)
v, = 3&(Py, Py, P.)/3P, (2b)
v, = 06(Py, Py, P,)/0P, (2¢)
or, in vector notation
v = Vpb(P). €))

Geometrically, this relates v to the energy surfaces in the Brillouin zone
as follows: To find the velocity corresponding to P, construct in P-space a
line perpendicular to the surface of
constant energy passing through P.
Proceed along this line in the direc-
tion of increasing energy and evaluate
d&/d|P| along this line. The group
velocity corresponding to P has the
direction and magnitude so obtained,
it being, of course, supposed that the
P,, P,, P, axes of the Brillouin zone
are parallel to x, y, 2 axes of the crys-
tal.2 This process will lead to a vector
distribution of velocities in the P.P,
plane of a Brillouin zone like that
shown in Figure 6.5. Here the lengths
of the arrows indicate the velocity
corresponding to the point in P-

/CONSTANT
/1 ENERGY
/|CONTOURS

h
+3a

IO
N
Q

-h
za

CRYSTAL MOMENTUM

Py e
CRYSTAL MOMENTUM

Fic. 6-5—Dependence of Velocity upon

space from which they originate.
Since P and v have different dimen-
sions, only the directions and the
relative magnitudes of the arrows are
significant.

The evaluation of the velocity com-

Crystal Momentum. The vectors give

direction and relative magnitudes of the

velocities corresponding to the P-values

at their back ends. (The energy con-

tours are spaced at equal energy inter-

vals with maximum energy at the
corners.)

pletesthedevelopment of the Brillouin

zone description of the properties of Bloch wave functions as outlined in
Figure 5.1. To summarize briefly the present aspect, we find that an
electron in a Bloch function moves so that it is equally likely to be anywhere
in the crystal. It has an average velocity of motion v which carries it
cyclically through the crystal over and over again. In this connection, it
should be noted that as the electron moves through the crystal in accordance
with the velocity shown in Figure 6.5, its P value does not change. That is,

2 We have merely defined in words the meaning of Vo0, the gradient of & in P _space.
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the vector in Figure 6.5 shows a velocity in ordinary space, not in P space.
The value of P is changed by externally applied forces or scattering proc-
esses, which are considered later.

We can reach a conclusion bearing on conductivity from the matters just
discussed, which we shall present here as a prelude to the following chapters,
where we shall again derive it as a limiting case: From the properties of the
Brillouin zone, we conclude that a full zone can carry no current. This
result follows simply from symmetry. For all lattices it is found that the
energy takes on equal values for P and —P and, as a consequence of this,
the velocities for P and —P are equal and opposite. In a full zone, since
every allowed state is occupied, the electrons always cancel off their veloci-
ties in pairs so that there can never be any velocity unbalance resulting in
an average velocity for the electrons as a whole. (A further discussion of
the additivity of the charge and current densities is given in Sections 15.7

and 15.8.)




CHAPTER 7

ELECTRONS AND HOLES IN ELECTRIC AND
MAGNETIC FIELDS

The chief aim of this chapter is to show that an electron in an otherwise
empty conduction band, and a hole in an otherwise full valence-bond band
behave, respectively, much like negative and positive particles in free space,
when acted upon by electric and magnetic fields. The treatment is
founded on the basic law for the rate of change of crystal momentum when
the electron is subjected to a force. This law, although in close analogy
with Newton’s second law F = ma, must be derived on the basis of quantum
mechanical arguments such as those given in Chapter 15. In Section 7.3
we give a derivation, which, although not rigorous, is helpful in making the
law seem reasonable. The method of derivation followed in Chapter 15 is
indicated in general terms in Figure 7.1, together with some consequences
of the law which are treated in various sections of this chapter as indicated
on the figure.

7.1 THE EFFECT OF A FORCE P =F

When the field in which the electron moves in the crystal is modified by
adding, to the periodic potential QU of the crystal, terms representing applied
electric and magnetic fields, the Bloch wave functions are no longer solu-
tions of the time-dependent Schroedinger’s equation. However, it is found
that if the vector P in the Bloch functions is varied with time according to
the law

dp
dat

P =F, €]

then the resulting wave function is a good solution. The expression to be
used for F is the classical one. The electric field E exerts a force —eE and
the magnetic field H exerts a force at right angles to both H and the average
velocity v of the electron. This leads to the expression for the force on the
electron

F= —¢(E+vXH) (2
where ¢ is the speed of light.!

1 For the meaning of v X H for a particular case, see Figure 8.7.
167
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The similarity between equation (1) and Newton’s second law of motion
F = ma = d(mv)/dt is the basis for calling P the crystal momentum.

If the force is steadily maintained, the point in the Brillouin zone repre-
senting the electron (that is, “representative point’’) moves steadily in the
direction prescribed by the force. When it reaches the surface of the zone,
it becomes equivalent to a point on the opposite side and continues into
the zone from the equivalent point.

PERIODIC POTENTIAL TIME-DEPENDENT
PLUS FORCE F SCHROEDINGER'S EQUATION
MATHEMATICAL
ANALYSIS

(CHAPTER 15)

7

LL=r |==e(5+‘L’é-“.) v=9p &(P) POWER=F-v

MATHEMATICAL
ANALYSIS
(SECTION 7.3 FORE)
(SECTION 74 FORH)

/N

CONSERVATION
OF DENSITY IN
BRILLOUIN ZONE

CONSERVATION
OF ENERGY

FiG. 7-1—Outline of Derivation of P = F and the Consequences P = F.

The result P = F implies that all points in the Brillouin zone represent
possible quantum states instead of just the basic P-lattice of equations (9)
to (11) of Section 5.5 which arose as a consequence of the periodic boundary
conditions. The reason for this difference is that, in general, the applica-
tion of electric and magnetic fields alters the periodic character of the
boundary conditions. Thus in a straight wire carrying a current the volt-
age at one end of the wire will not be the same as at the other, and it is
meaningless to require periodic boundary conditions to apply between the
two points. However, it is actually possible to bend a wire into a circle, in
which case periodic boundary conditions should apply to the coordinate
which runs around the circle. It is also possible to apply an electric field
to such a wire by using it as a short-circuited secondary winding on a trans-
former. A model of this sort is treated in Section 15.9 and it is found that,
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although the induced electric field produces changes in the wave function,
it does not change the number of wave lengths of the wave function around
the circle. However, it does change the energy of the electron and the
current carried by it in precisely the way they would change if the periodic
requirements on the boundary condition were disregarded and the wave
function altered according to the formula P=F.

The details of the argument involve mathematical procedures which
cannot well be described in simpler terms. However, the result is that, for
the periodic model, all energies and velocities vary just as if the lattice of
points representing allowed quantum states shifted under an electric field
in accordance with the law P = F. We shall accordingly treat the effect of
fields in this way.

The same result may also be obtained by considering a wave-packet
composed of Bloch functions all having approximately the same value of P.
When electric and magnetic fields act on the packet, it is altered so that the
average value of P changes according to thelaw P = —e(E + v X H/c).
Corresponding results are obtained if the wave-packet is made to represent
a hole. (Sections 15.6 to 15.8.) .

As a consequence of these facts, we are justified in taking the law P = F
as being the proper generalization of Newton’s Second Law of Motion for
electrons in a crystal. Since the application of this law to all electrons in
the states of a Brillouin zone produces a flow of all the occupied states in
the zone, we may also consider it to apply to the unoccupied states as well.
No error is introduced by this process, since, if the states are empty, we are
not concerned with them directly and, if they are occupied, the behavior is
correctly given. The procedure of considering that the empty states also
vary according to the same law, however, has advantages in analyzing the
behavior of holes and is used in Section 7.6.

Finally it may be remarked that in the presence of a magnetic field the
relationship between classical momentum p and velocity v, and between the
corresponding quantum mechanical operators, is no longer p = mv. The
correct relationship is discussed in Section 15.6. It is shown, however,
that the relationships

&=6(P) and v = Vp&(P) 3

are unaltered by a magnetic field so that equations (1), (2), and (3) con-
stitute a complete set of equations for determining the behavior of an
electron in applied fields, at least for linear terms in E and H.

v2 THE THEOREM OF THE CONSERVATION OF
QUANTUM STATES
The flow of points in the Brillouin zone is compatible with the theorem
of the conservation of states for the case of electric and magnetic fields.
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We shall treat first the electric field, returning to magnetic fields later.

In the case of the electric field the result is obvious. Since the force is
—¢E and the same for all values of P, the lattice of allowed quantum states
simply moves as a solid with translational motion through the Brillouin
zone. It is evident that this leaves the total number of allowed points in
the Brillouin zone unchanged and also has no effect on the density of their
distribution.!

7.3 THE PRINCIPLE OF THE CONSERVATION OF
ENERGY FOR AN ELECTRIC FIELD

If a particle is accelerated by a force F, we should expect its gain in
energy to be equal to the work doneon it by theforce. The power furnished
to the particle by the force is v-F and the rate of change of energy is
& = Vp6 - P. According to the laws we have discussed P = F and v =
V6, so that these two powers are equal, and conservation of energy applies
to the behavior of an electron subjected to a force.

Although energy is conserved when the electron is acted upon by a steady
electric field, its behavior in other respects is strikingly different from that
of a classical particle in free space. To a large degree, the particularly
unusual features, which we shall shortly describe, are suppressed by the
random processes of scattering which are always active in real crystals
(except metals in the superconducting state). However, it is worth while
to present these results because they are direct, logical consequences of the
theory presented in Figures 6.4 and 6.5 and, in addition, they illustrate
principles which we shall later use.

Accordingly, we shall consider the motion of an electron in a perfect
crystal under the influence of a uniform force F in the x-direction. If this
electron is initially at the lowest state in the upper band at P, =0 in
Figure 7.2, then its value of P, will increase toward the right at a constant
rate P, = F,. Its velocity will initially increase to the right also, and, in
fact, directly in proportion to the momentum so that, as long as the curve
of part (b) may be well approximated by a straight line, the velocity
increases uniformly in time as it would for a classical particle, such as a
falling body. For these conditions the behavior of the electron can
actually be treated in a classical fashion, as will be discussed later. How-
ever, after a certain length of time the velocity will reach the maximum of
the curve in part (b) and, thereafter, will decrease. Thus in the region
where dv./dP is negative, the electron behaves as if it had a negative mass;
that is, in this region the continued application of a force to the right
actually produces a deceleration to the right and the particle slows down.

11t also leaves the wave functions orthogonal.
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This behavior has no classical analogue in the dynamics of particles and is
due to the wave-mechanical laws governing the electron. If the field is
maintained long enough, P, reaches the value £/2a, after which its velocity
becomes negative as indicated by the dotted line, and the electron moves
against the force. (This behavior is, of course, equivalent to moving P,
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F1c. 7-2—Energy and Velocity in Brillouin Zones.

back to an interior point on the opposite side of the zone in accordance with
the periodic property of P;.) Finally, the velocity reaches a maximum
value in the negative direction, corresponding to the minimum of curve (b),
and then decreases in magnitude to zero once more, after which the cycle
repeats itself. In other words, the particle oscillates back and forth. Ifa
wave-packet were made up using wave functions, all having nearly the same
momentum, this wave-packet would oscillate back and forth in the crystal.

In fact, the position of the wave-packet as a function of time would be a
curve of exactly the same shape as that which gives its energy as a function
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of momentum, a result which can be seen from the following equations:

%= f vadt = f (96/9P,)dt = f (96/9P,)dP,/F,

= &(P,)/F, + const = &(F,#)/F, + const 1)

since if F is applied at ¢ = 0, P, = F,tand d¢t = dP,/F,. Since the work
done on the particle is xF%, this equation, in addition to giving the position
of the electron as a function of time, is also an expression of the conserva-
tion of energy. The period of the motion is 4/4aF,, the time required for
P, to traverse the Brillouin zone.

The oscillatory aspect of the electron’s behavior in this case can be
profitably considered in calculating the probability of exciting an electron
from one band to the other under the influence of a strong applied field*—a
subject not within the scope of this presentation, however. Instead, the
discussion just given should be regarded as intended to illustrate features
of the theory of Brillouin zones. As we shall see, collision processes intro-
duce random transitions of the electron from one state to another in times
less than the period of the motion so that the anomalous behaviors con-
sidered here play no important role in ordinary conduction processes.

7.4 THE EFFECT OF A MAGNETIC FIELD

We shall next consider the forces exerted by a magnetic field upon a
moving electron and the consequent changes in momentum. We shall treat
the restricted case of a crystal momentum in the P, = 0 plane for a
magnetic field in the z-direction. In Figure 7.3(a) we represent the PP,
plane of a Brillouin zone with the energy contours and velocity shown as in
Figure 6.5. The velocity, it will be recalled, is proportional to the gradient
of & in the zone and is thus perpendicular to the energy contours; the
direction and relative magnitude of the velocity are indicated by arrows in
the figure.

~ When a magnetic field is applied in the +=z-direction, the vector force
—ev X H/c on the electron will result in a changing momentum. Since
the force is perpendicular to v, the momentum will change as indicated by
the arrows in (b). This results in a flow of representative points along the
energy contours. Thus, the electrons gain no energy from the magnetic
field—a result consistent with the fact that the force produced by H is
perpendicular to the motion of the electron and hence does no work on it.
As discussed in connection with the Pauli principle, this flow should not
change the density of the points and should thus be incompressible. This
necessary result comes directly from the formula for the change of momen-

1G. Zener, Proc. Roy. Soc. 1454, 523-529 (1934).
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tum. Thus if we consider the lines L; and L in Figure 7.3(b), we can
show that the flow of particles across Ly is just the same as across Ly; for
example, if L, is half as long as Ly, then the velocity of an electron at Ly
will be twice that at Ls, and consequently the force and rate of change
of momentum will be doubled. Hence, equal volumes of momentum
space will flow across L; and Lp in equal times. Accordingly, if the
quantum states are initially uniformly distributed, there will be no tendency
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for them to accumulate between L; and L, since the flow across Ly and Lg
are equal. (For three dimensions this result can be put in the form that
divergence of P is zero,! so that the general conclusion is that a magnetic
field by itself serves only to move the points about on their energy surfaces
without producing any accumulations or affecting the properties of the
equilibrium distribution.)

These general results for the change in P for an electron in a Brillouin
zone under the influence of electric and magnetic fields will next be applied
to the behavior of a single electron in an otherwise empty conduction band
and a single hole in an otherwise full valence-bond band—still moving ina
perfect crystal, however, so that random processes are prevented.

1 ¥p- (Vpb X H)=H- (Vp X Vpb) + Vpb - (Vp X H) =0 —0.

J
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7.5 THE BEHAVIOR OF AN EXCESS ELECTRON: EFFECTIVE
MASS AND REARRANGEMENT OF THE BRILLOUIN ZONE

In order to apply the theory just discussed to problems of conductivity
and Hall effect, it is necessary to deal with specific properties of the energy
surfaces in the Brillouin zones. The calculation of energy surfaces has
actually been carried out for a number of metals by using approximate
methods. However, no detailed calculations are as yet available for semi-
conductors. For this reason, a certain amount of guess-work is involved in
dealing with these cases. Fortunately, however, there are general prin-
ciples, like those involved in determining the shape and size of the Brillouin
zone, which can be used as guides. These principles are based largely on
symmetry conditions which the surfaces must satisfy in order to be con-
sistent with the basic symmetry of the crystal. In addition there are some
quantitative calculations on certain features of the energy surfaces which
help to establish numerical magnitudes. Finally there are experimental
data which can be used to test the reasonableness of the assumptions con-
cerning the shape.

On the basis of these arguments, we shall proceed by assuming that the
diamond-structure semiconductors have approximately spherical energy
surfaces at the highest energies of the valence-bond band and the lowest
energy of the conduction band, these being the regions of interest for con-
ductivity.! Furthermore, we are interested only in energies quite near
these edges of the bands, the reason for this being, as discussed in more
detail in connection with the Fermi-Dirac statistics, that thermal energies
can excite electrons by only about 0.03 electron volt of energy, whereas the
band may be several electron volts wide. Hence the states of interest are
within a few per cent of the edge of the energy band.

In order to deal with electrons and holes, we must consider both the
bottom of the conduction band and the top of the valence-bond band.
Furthermore, for each of these, the energy of interest may occur at either
the center or the corner of the Brillouin zone. Fortunately, all of these
cases may be treated on an equivalent basis, as we shall show. We shall,
therefore, treat first the simplest case and later show the relationship of the
other cases to it. Accordingly, we suppose that the bottom of the conduc-
tion band comes at an energy & at the center of the zone; this is the situa-
tion shown in Figures 6.5 and in 5.11 if the highest energy is at the corners.
General theoretical arguments show that the spherical surfaces must have

the equation
6=50+K(Px2+Py2+P22)=60+sz (l)
1 See, for example, F. Seitz, Phys. Rev. 73, 549-564 (1948). I am informed by C. Herring,
however, that there are some strong theoretical reasons for believing that one of the bands is

degenerate at its limiting energy with consequent complications in the shape of the energy
syrfaces, We shall return to this question in Chapter 12,
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where P is the magnitude of P. This gives rise to a velocity

v, = 06/3P, = 2KP, (2a)
vy = 96/dP, = 2KP, (2b)
v, = 06/0P, = 2KP, (2¢)
or in vector notation,
v = 2KP. 3)

If a force F is applied to the particle, the velocity changes according to the
law ’

v = 2KP = 2KF. (4)
This is analogous to Newton’s second law in the form
F=ma or v=F/my, (5)

if we interpret 1/2K as an effective mass m, for an excess electron. In
other words, the application of a force changes the velocity of the electron
just as if it had a mass of 1/2K.

The quantity 1/2K for states in the conduction band (or 1/2K’ for the
valence-bond band) is of the same order of magnitude as the mass of the
free electron, a result which we shall derive by general considerations of the
wave functions in Section 14.7. From the experimental data on silicon
and germanium it appears to be quite near the electron mass. For most
of the purposes of this chapter not enough use is made of the difference
between the effective mass and the mass of the free electron to warrant
emphasizing the effective mass at this point in the treatment by giving it a
special symbol. We shall, therefore, write 1/2m for K and proceed
accordingly.? ' '

On the basis of this assumption, we see that the response of an electron
at the minimum energy point of a Brillouin zone to a force is the same as
for a free electron with

5 = F/m. ()

We shall use this relationship later in connection with conductivity.
What happens if the lowest energy of the zone comes at the corner of the
zone? To illustrate this it will suffice to consider a two-dimensional
example. This is shown in Figure 7.4, where, for emphasis, the higher
energy contours have been omitted. In (a) the effect of a force in accel-
erating an electron from Py to Py is indicated. Each time the momentum
reaches a point on the zone boundary, the wave function becomes equiva-
lent to a point on the opposite boundary, as shown. (It may be noted in

2 A wave-packet electron made from quantum sta.es where the effective mass is very small
can be accelerated more readily in a crystal than it can be in vacuum. The way in which
interaction with the crystals helps to accelerate the electron is discussed in Section 14.7.
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this case that when the point reaches a boundary, v is parallel to the bound-
ary so that, as previously discussed, the wave function carries no current
in a direction perpendicular to the boundary.) If the zone is rearranged
for convenience as shown in part (b), the change in momentum from Py to
P5 becomes a continuous straight line. If we now describe the momentum
of the electron by the vector P’ which is drawn from the center of (b), we
once more have the relationship that

& = &, + K' (P, + P’ + P,”*) = & + K'P? @)
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Fic. 7-4—Rearrangement of Brillouin Zone for the Case Where the Lowest Energy
Comes at the Corners.

as a consequence of general theoretical arguments about the energy sur-
faces near the corners of the zone. Since the behavior of P/ under a force
in (b) is just the same as that of P itself at the center of the zone in the case
previously considered, it is evident that similar results will be obtained here
and 1/2K’ can be regarded as an effective mass. As Figure 7.4 illustrates,
the velocity of the electron varies continuously with P’ and shows no dis-
continuous behavior at the edge of the Brillouin zone.

Thus the effect of a force on the electron is to change its crystal momen-
tum according to the equation i

P or PP=F (8)
and, since its velocity is related to P or P’ by the equation
v=20KP=P/m
or ‘ . v="2KP =P/m, ()]
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the change in velocity is given by
v=F/m or F=ma (10)

where @ = v is the acceleration.
In terms of P, P/ and v the energy can be written as

&=6,+ (P2 or P'?)/2m = & + mv?/2. (11)

Thus the energy has the form of a constant plus a term which is formally
identical with a kinetic energy associated with velocity v. Actually, the
term mv?/2 represents a combination of changing potential energy of the
clectron in the periodic potential and changing kinetic energy as the Bloch
wave function for the electron changes with changing P. Thus although
the expression for the energy may be used as if it arose from changing
kinetic energy of motion of the excess electron, this feature should be con-
sidered a mathematical simplification rather than a statement of a basic
physical fact. As will be seen in Section 7.6, a similar simplification may
be made in the case of a hole.

We next must verify that under the influence of electric and magnetic
fields, the Brillouin zone electron behaves like a classical one so far as its
acceleration is concerned. This result follows directly from the F = ma
together with equation for the force, which as we discussed in Section 7.1,1s
taken as

—¢(E + v X Hjc) = F = mv = ma. (12)

Here ¢ is a positive number so that —¢ is the charge on the electron. This
equation states that the rate of change of v in electric and magnetic fields s
related toE, H, and v in just the same way as it is for a free classical electron.

This result seems so obvious that it may be worth while to review briefly
the route taken in reaching it. When we treat the case of the hole in the
next few pages, we shall use the same machinery but will conclude that a
plus sign should be used in the equation expressing a in terms of E, H, and v.
In essence, we have indicated that it is a consequence of quantum theory
that an electron may have a state of motion through a periodic potential
field which gives it a crystal momentum P and velocity v which remain
constant in time if no external forces act (the crystal being assumed perfect).
This in itself is a surprising result; a classical electron moving in the
crystal field would be deflected so often that its vector velocity would take
on practically random values and would, on the average, be zero. It 1s,
thus, the Schroedinger wave equation which leads us to the idea that the
electron moving in the crystal can have values for crystal momentum and
average velocity which are independent of time. Next, we find that from
the same quantum mechanical framework we can deduce that P =F.
Finally, as an approximation, we conclude that near the minimum energy
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point of the zone v = 2KP, and as a further approximation, that v = P/m.®
(In later chapters we shall introduce m, and m, for effective masses and in
Chapter 12 we shall consider a more complicated possibility.) Finally we
equate F to the classical expression for force on an electron of charge —e
and velocity v moving in a field E and H; this last step represents in a
sense an additional assumption in the exposition as presented here. Ac-
tually this expression for the force is contained in Schroedinger’s equation,
and thus does not really represent a new assumption.

Thus we reach the end of our treatment of the behavior of an excess elec-
tron in the conduction band. The Brillouin zone theory indicates that it
behaves in the same way as a free classical electron, provided its energy is
always so low that it stays near the bottom of the conduction band. In the
next paragraphs we shall verify that the behavior of a hole in the valence-
bond band is similarly like that of a positively charged electron.

76 THE BEHAVIOR OF A HOLE

As we shall show, the hole is really an abstraction which gives a con-
venient way of describing the behavior of the electrons. An essential
feature in making this abstraction is the fact that a full Brillouin zone
with every allowed state occupied can carry no net current. This feature
permits the behavior of the hole to be found directly from the behavior
which the missing electron would have if it were present.’

We indicated at the end of Chapter 6 that the average vector velocity for
all the electrons in a Brillouin zone was zero because their individual
velocities cancelled off in pairs. However, this conclusion was based on
symmetry arguments and followed a discussion of the basic P-lattice of
the Brillouin zone. (Figure 5.10.) After that discussion, we permitted the
array of allowed points to be translated through the Brillouin zone keeping
the density constant. This does not invalidate the conclusion that the
full zone can carry no current, for when the velocities are added up for all
the electrons, they are found to cancel so accurately that what is left over
is far less than that of one electron; in fact, the bigger the crystal and the
more electrons in the zone, the more perfect is the cancellation., Thus the
cancellation failure is negligible compared to the effect produced by re-
moving an electron so as to leave a hole in the band. This is the key to
the procedure for computing the effect of the hole.

We reason as follows: Consider first a full Brillouin zone. Each elec-
tron, as discussed in Section 6.1, contributes a current density (—e/¥#)v to
the crystal. We single out a particular quantum state for consideration;

3 When we apply this theory to practical cases, the unlimited variations of P produced by
an electric field are reduced by the effect of collisions so that only small P values need be
considered and the approximation applies.

1 See Sections 15,7 and 15.8 for an analytical treatment of the same subject matter.
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call it state s, with velocity v,. We now add up all the currents due to all
the electrons, but we split the sum into two parts with the electron in state
s separated from the others. Since the zone is full, this sum is zero, and
. we have
; (—e/P)vi + (—e/V)vy =0, e8]
178
from which we obtain another equation:
Z (—e/Pvi = (e/V)v,. (2)
178
Now the left side of this equation is simply the net current due to a Bril-
louin zone with every state occupied except s. Hence we see that this
current is just what we would get if we had an empty zone with one posi-
tively charged electron moving with v,. This is a lemma in the proof that
holes act like positively charged electrons. Stated in words:
The current due to a hole corresponds to a charge +e moving with the velocity
associated with the vacant quantum state:

I (hole) = (+e/P)v,. 3)

Our next problem is to find how the current in the zone varies under
applied electric and magnetic fields. For this purpose we must consider
the dependence of energy upon momentum near the top of the energy band.
As we did for the case of the bottom of the energy band, we disregard the
possibility that this upper energy may be degenerate and conclude that
the surfaces must be spherical and that the energy must vary as P?; the
problem of rearranging the zone if the highest energy occurs at the corners
is handled in the same way; and we also use the electron mass m for 1/2K.
However, there is a vital difference from the case of the bottom of the
conduction band, since now we must have an energy which decreases as
P or P’ varies from the maximum energy point. Consequently, we have

& =86 — K@P2+ P2+ Pr
= 60 - P2/2mp (4)

where m, is the effective mass for a hole. ~As for my, of (5) in Section 7.5,
we shall not distinguish between m, and m in this chapter. From this we
conclude that the relationship between velocity and momentum is

and the relationship between velocity and energy is
& = 6y — mv?/2. 6)

Hence if we had an isolated electron in this part of the Brillouin zone, it
would behave in a very anomalous way, as discussed in connection with
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the periodic motion in Section 7.3. For example, if the isolated electron
were at the top of the band, the application of an electric field would
decrease its energy rather than increase it. However, we do not have an
isolated electron but instead a vacant quantum state at the top of an
otherwise filled band. This situation obviously represents a minimum
energy condition for the band as a whole since the electrons are all in lower
states of energy than the vacant state. When the hole acquires velocity,
it does so at the expense of displacing an electron from a lower state into the
higher state. We must now see that the resulting changes in energy and
current are those to be expected for a charge of -+e and a mass of +m.

We shall, for purposes of exposition, take a preliminary step in the proof
by showing the behavior of a hole initially at rest corresponds to a positive
and not a negative mass. Accordingly, we suppose that the vacant quan-
tum state s is at the highest energy of the valence-bond band so that
& = &, and v, = 0. The application of an electric field E causes the
quantum states to change according to the law P = —¢E. Hence, the
velocity of the vacant state, which bears a negative mass relationship to
the momentum, will vary according to the equation

U, = —P/m = +¢E/m, ) )

and the current will vary according to
I= (+e'Vb, = (+6/m)E. (8)

This relationship shows that the current increases in the direction of the
applied field. Ifv, = 0 at/ = 0, then the power delivered to the specimen
would be given by the equation

E-I= (/m)E% 9)

so that energy would be absorbed in accelerating the hole. Now suppose
we try to interpret the behavior of the hole as corresponding to 2 charge ¢,
and a mass m,. Then we would conclude that

v = ¢, E/m, (10)

and
E-I= (¢,%/my)E%. 11

It is evident that the only choice for e, and m, which will cause these two
equations to give the same results as (7) and (9) is ¢, = ¢ and mp = m.
The choice m, = —m is excluded by the sign of the power input equation—
attributing a negative mass to the hole would cause it to deliver energy to
the field rather than to absorb it.

We shall next derive a more general expression which includes the effects
of magnetic fields as well.  For this case

P=F=—¢E+ v, X Hc) (12)
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and mv, = —P as before. From these equations we obtain
mo, = +e(E + vy X H/c). (13)

This is just the equation for F = ma for a positive charge. Furthermore,

we have shown that the current density is given, as in equation (3), by
I= (e/V)v, (14)

From these two equations we may obtain an equation relating Ito E, H,
and I:

1= (2/m)[(E/V)+ (I X Hfec)] (15)

for a hole in the valence-bond band where ¢ is the positive magnitude of
electronic charge. _

A similar treatment for the case of an electron at the bottom of the
conduction band, using equation (12) of Section 7.5 instead of (13) of
Section 7.6 and (—e/¥)v instead of (4¢/¥)vs, leads to

I= (E&/m(E/V) — (I X HJec)] (16)

where again ¢ is the positive magnitude of the electronic charge so that the
charge on the electron is —e.

It is evident that these equations differ in just the way expected for a
change in sign of ¢. An interpretation involving a negative mass would
lead to a current which was accelerated opposite to E for the case of H=10
and is thus inadmissible. (See Problem 7.) Equations (15) and (16)
are in a form readily adapted to treating conductivity and Hall effect and
are employed for the latter purpose in Section 8.7.

The equation of conservation of energy may be established for the case
of a hole in the valence-bond band by addition for all the electrons in the
zone. Since, for each of them, 4&6/dt = F - v, the rate of change of the
total energy in the band must be equal to the rate at which power is being
furnished by the electric field.

It is more illuminating, however, to interpret the energy changes as due
to a “pseudo kinetic energy of motion of the hole”. This idea is approached
by calculating how the energy of the electrons depends on the energy of the
empty quantum state. If the hole changes its velocity from v, =0 to
v, = vy, it is evident that the redistribution of the electrons has a net
result of shifting one electron from energy

6o — mvi2/2 to & (17)
or an increase in energy of mvi%/2. Of course, the redistribution takes
place by the flow of the quantum states? according to P = F, so that the

2 It is evident from the discussion of Section 7.2 that the quantum states should be con-
sidered to flow, whether occupied by an electron or not.
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electron formerly at v; is not the one raised to v = 0. However, the net
increase in energy for all the electrons is this amount. In other words, the
energy gained by the electrons is equal to the kinetic energy calculated for
1 hole of mass - moving with velocity vy.

Finally, it may be added that the charge density in the crystal due to one
hole in the valence-bond energy band may be determined from the wave
functions occupied by the electrons. When this is done, it is found that

_the hole contributes a deficit electron density. Furthermore, the wave
functions may be combined to produce a wave-packet for the hole and this
wave-packet is found to have the group velocity v, corresponding to the
velocity of the vacant quantum states combined in making the wave-
packet (Section 15.8). Wave-packets for the positive charge of holes may
thus be dealt with in the same way as the wave-packets for electrons. It
is such wave-packets for holes that should be used to describe the flow of
holes in #-type germanium in transistors or the Haynes-Shockley experi-
ment of Section 3.1.

7.7 SUMMARY

Starting with the law derived from quantum mechanics that P =F and
certain approximations about the behavior of the energy surfaces in a
Brillouin zone, it has been shown that the behaviors of one electron in the
conduction band and of one hole in the valence-bond band are given by the
classical equations for an electron with minus charge and plus charge,
respectively. The argument has been long, and the behavior of the hole
has been shown to be essentially a shorthand way of describing the behavior
of all the electrons.

Some of the essential conclusions about the behavior of the electron and
the hole are shown in Figure 7.5. Part (a) represents the Brillouin zone
for the conduction band, a small portion near the minimum energy having
been singled out for attention. In this region, the velocity and the accel-
eration of an excess electron by a magnetic field will be as shown near the
center portion of Figure 7.3. (It may have been necessary to rearrange the
zone and use P’ in Figure 7.5.) Part (b) similarly represents the highest
energy in the valence-bond zone, in which the velocity and the acceleration
in a magnetic field of a hole will be as shown near the corners of Figure 7.3.
If an electric field E, alone were present, all the points in the zone would
move to the left in accordance with the equation P, = —¢E,, and the
velocity of the electron and hole would change as v (electron) = P/m,
v (hole) = —P/m. These differences are indicated in the four parts of
Figure 7.5 for an electron and a hole, each initially in the state withv = 0.
The energy for the quantum state occupied by the electron would increase
with time in (a) and (c) and that of the state occupied by the hole (that is,
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Dashed Arrows Show Variation with

left empty) would decrease with time in (b); the total, however, of all the
electrons in the valence-bond band would increase as shown in (d).

If a magnetic field alone were applied, all of the quantum states would
simply rotate as a rigid body about the P,-axis, the angular velocity being
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(as discussed in the next chapter; -also see footnote below) Z=eH/mc, the
directions of rotation being those shown in Figure 7.3.

If both E, and H, are present, the dependence of the quantum states
upon time will be as shown': The momenta and velocities of the quantum
states involved move on circles with constant angular velocity. The two
fields result in a bodily rotation of all points in P-space (not merely the one
initially at v = 0) about the point ® in the diagrams—a displacement
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Fic. 7-6—Conventional Energy Band Picture, Showing Interpretation of Electron
: and Hole Energies.

which obviously conserves the density of quantum states in the Brillouin
zone.

A conventional scheme for representing the motions and energies of holes
and electrons is shown in Figure 7.6. Here we consider the production of a
hole-electron pair by a photon as discussed in Chapter 1. The photon
excites an electron from a state in the lower band to one in the higher band.
In general, neither of the states is at the edge of the forbidden band, so that
both the hole and the electron have velocities of motion and contribute their
apparent kinetic energies to the energy of the crystal. If the location of
the exciting photon has been closely controlled (by focusing the light with
a lens, for example), then the wave functions for the hole and the electron
will be represented by localized wave-packets. The effect of the electric

1 This interesting case is not essential to the later development—the formulae of the Hall
cffect being obtained in a simpler way. It is instructive, however, to work it out in detail.
The solution can be compactly obtained in complex notation as follows: Letting w = & + 1%,
the equation mw = =e(Ez — iwH,/c) is solved by w = —icE,/H, + const exp (ieHt/mc)
so that © corresponds to vy = —¢Ey/H, This can easily be integrated to give w(#).
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field is to tilt the energy bands since an electron in a wave-packet state at
the bottom of the conduction band will have a lower energy at the positive
side of the crystal. In the absence of an electric field, the lowest energy
state for the excited pair is that for which the electron is at the bottom and
the hole at the top of their respective bands. The general rule that holes
tend towards high levels on energy diagrams is, of course, just the same as
saying that electrons tend towards low levels. The effect of the electric
field will be to accelerate the wave-packets in the indicated directions. We
shall return to a more detailed treatment of such energy level diagrams in
Chapter 12 where they are used in analyzing the rectification of p-» junc-
tions and related topics.

In order to proceed further to the discussion of conductivity and Hall
effect we must consider the effect of random processes upon large numbers
of holes and electrons behaving as shown in Figure 7.5. This we do in the
following chapter.

7.8 CONNECTION BETWEEN QUANTUM AND CLASSICAL
MECHANICS

From the material presented in this chapter, it can be suggested how the
results of quantum mechanics may merge with those of classical mechanics
in the limiting case. As we have discussed, it is possible to build up wave-
packets which move with certain group velocities. If the electron is not
in a crystal (so that the periodic potential energy is eliminated), then
quantum mechanics leads to just the same formula for energy, as a function
of momentum, as does the classical theory for an electron. Consequently,
the group velocity, momentum, and energy are related as in the case of a
free particle. Furthermore, in electric and magnetic fields, the electron is
subjected to a force which changes its momentum as if it were a classical
particle. As a result, the wave-packet will behave in just the same way
as a free electron.

Analysis along the lines presented above can be carried out in detail.
When this is done, it is concluded that so long as the dimensions of the
environment in which the electron moves are very large compared to its
wave length, the wave-packet may be regarded as traveling like a classical
free particle. The requirement that the dimensions be large is not very
stringent. For example, wave-packets for electrons in the smallest. of
vacuum tubes would be a thousand times smaller than the grid wire
spacing and thus could be dealt with as particles.

In this sense, classical mechanics may be regarded as a limiting case of
quantum mechanics just as geometrical optics is a limiting case of physical
optics, which deals with diffraction phenomena for light. In both cases,
when the size of the structures involved is very large compared to the wave
- length, the appropriate limiting methods may be employed. The same
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differences in treatment are used in connection with both radio waves and
microwaves. For antenna design and small-scale effects, diffraction phe-
nomena are vital; for large-distance effects such as ionosphere reflections
and the target end of radar systems, geometrical optics suffices.

There is, of course, far more to the philosophy of quantum mechanics as
applied to large-scale phenomena than is involved in showing that the
electron wave-packet behaves like a classical electron. However, a treat-
ment of these important questions belongs not in a treatise on a limited
phase of the role of electrons in semiconductors, but in texts on quantum
mechanics and the philosophy of physics to which the interested reader 1s
here referred.!

ProBLEMS

1. Verify, by considerations of symmetry, from Figure 7.3 that, if an
electric field E; = E, is applied, the electron undergoes periodic motions -
in the # and y directions in space with the same period, so that it periodically
retraces the same path. What can be said of the motion if £, = 2E,?

2. By the method of the footnote of Section 7.7, find the trajectories in
fields E, and H, for holes and electrons with initial velocities v, and v,.

3. Prove that, if the initial velocities at =0 are 9, =g cos 6, v, =1y sin 0,
the displacement at time / when averaged over 0 is independent of vg.
(This shows that the effect of random velocities in Section 8.6 can be
disregarded.)

4. For some crystals, such as bismuth and zinc, the important parts of
the Brillouin zones have energies of the form

& = & + K.P.2 + K,P? + K.,P2.

Find the equation of motion which replaces ma = F for this case and
integrate these equations for F due to H..

5. What happens to the mass of the crystal as a whole when the hole and
electron of Figure 7.6 recombine?

6. Verify by using in part equations (15) and (16) of Section 7.6 that

the power expended by the electric field E ( = f I-EdV ) can be accounted

for by the changing energy of the electron or hole.
7. Show that a particle of negative mass initially at rest so that I = 0 at
¢ = 0 produces a negative resistance and delivers during time # an energy

PE*2 /2| m|.
Show that a particle of positive mass absorbs an amount of energy given
by the same formula.

1P, W, Bridgman, The Logic of Modern Physics, Macmillan, New York, 1927. R. B.
Lindsay and H. Margenau, Foundations of Physics, John Wiley & Sons, New York, 1936




CHAPTER 8

INTRODUCTORY THEORY OF CONDUCTIVITY
AND HALIL EFFECT

8.1 INTRODUCTION

In this chapter the laws of motion for electrons and holes derived in
Chapter 7 are applied to the analysis of conductivity and Hall effect. The
exposition presented here is based on a simplified treatment of the “mean
free time”. In Chapter 11, a more detailed discussion of the mean free
time is presented. The purpose of presenting the simplified treatment at
this point in the text is to illustrate the connection between experimental
results and the abstract matters discussed in Chapters 5, 6, and 7 before
proceeding with the theoretical topics of the next three chapters, which
treat energy level diagrams, the Fermi-Dirac Statistics, and collision
processes. In addition, the simplified treatment, in anticipating the results
to be derived later, serves as an introduction to the following chapters.

In this chapter, we shall introduce, in addition to the mean free time, the
concepts of an equilibrium thermal distribution of electrons and holes and
of random processes which bring this equilibrium about. However, these
latter two ideas will enter the equations only through the mean free time,
denoted by 7.

There are two important ways of thinking about the current density in a
semiconductor. Although mathematically equivalent for most purposes,
the mental images associated with these are somewhat different and for
this reason both methods are described. According to one method, the
electrons or holes are thought to be in definite quantum states in the
Brillouin zone and thus to be carrying currents of (Fe/#)v in accordance
with equations (1) of Section 6.1 and (3) of Section 7.6. This method is
well adapted to calculating currents on the basis of diagrams showing how
applied electric and magnetic fields disturb the distribution of electrons in
the momentum space of the Brillouin zone. According to the other
method, the holes and electrons are treated as classical particles having at
any instant definite locations and velocities. This treatment is justified by
the analysis presented in Chapters 6 and 7 which shows that wave-packets
for holes and electrons behave like classical particles having effective
masses which may differ from the free electron mass. According to this
particle treatment, the electrons and holes move in the presence of electric
and magnetic fields in curved paths (like the parabola for a falling body)

187 . '
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between collisions. (In Chapter 11, a more general method of attack is
used which is applicable to the case in which the effective mass concept
must be modified.)

There are cases, however, in which the wave-packet method is appro-
priate to the physical situation whereas the method of using individual

SCHROEDINGER'S |IMPERFECTIONS : IMPURITIES,
MAGNETIC ELECTRIC EQUATION PLUS THERMAL AGITATION
FIELD FIELD PERIODIC POTENTIAL AND DISORDER
(CHAPTERS 5,6,7) (SECTION 8.2, CHAPS.11,17)
Y - 3 y
LAWS FOR ELECTRONS TRANSITIONS,
AND HOLES IN FIELDS QUANTUM JUMPS
(CHAPTER 7) (SECTION 8.2, CHAPTERS 11,47)
EQUILIBRIUM
MEAN DISTRIBUTION
FREE TIME
(secTion 8.3) (SECTIONS.2
: CHAPTERS 9,10
DISTORTED
DISTRIBUTION
(SECTION 8.4)

~

CURRENT, CONDUCTIVITY,
FURTHER DISTORTION MOBILITY

(secTioN 8.7) (SECTION 8.4, CHAPTERII)

|

HALL EFFECT
(SEcTION 8.8)

Fic. 8-1—Outline of Arguments Used in Developing Expressions for Conductivity
and Hall Effect.

states in the Brillouin zone is not. The latter is adapted to the case in
which the wave function gives equal probability that the electron (or hole)
isin anyunit cell of the crystal. In the experimentof Haynes and Shockley,
Section 3.1, on the other hand, the holes are injected at a definite point in
the germanium and when first injected have negligible probability of being
anywhere except near that point. After a measurable lapse of time, the
probability that there are holes at the collector point first rises appreciably
above zero. The appropriate description, in this case, is that of wave-
packets or particles, and one may think of the holes as being injected and
pulled along the germanium as described in Chapter 3. The justification
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for this procedure is the mathematical one that wave-packets of electrons
or holes have the behavior of classical particles.

Figure 8.1 has been prepared to indicate the logical connection among
the various ideas discussed in this chapter. The section numbers given in
the figure indicate where the topics are discussed.  This figure will probably
be of most value after Sections 8.2 to 8.7 have been read.

82 RANDOM PROCESSES AND TRANSITION PROBABILITIES

As stated in the introduction to this chapter, the theory of the mean free
time is based on the idea of random processes. As its name suggests, the
mean free time, which has already been referred to several times without
being defined, is related to the time during which an electron moves without
being affected by a random process. We shall consider first the nature of
random processes, and then show how these processes can lead to an
equilibrium distribution. In the following section we shall define the mean
free time and relate it to these random processes.

The random processes referred to occur because the crystal is imperfect.
If the crystal were ideal so that the potential field in which the electron
moves were perfectly periodic, then the electron would remain in one quan-
tum state indefinitely; or, if acted upon by electric and magnetic fields, it
would change its momentum according to the law P = F. Inarealcrystal,
however, the potential field is not perfectly periodic and, as indicated in
Figure 8.1, there are three main classes of imperfections. The heat stored
in the crystal is present in the form of vibrations of the atoms. If tempera-
ture vibrations are lacking, imperfection may be present in the form of
impurity atoms, such as donors or acceptors as discussed in Chapter 1, or in
the form of places where atoms are missing from their normal positions and
are perhaps squeezed into places in the crystal where they do not belong.
(Additional imperfections, such as “dislocations”, may be present also.)

A description of the motion of electrons in imperfect crystals is based on
the quantum-mechanical idea of transition probabilities. When the crystal
is imperfect, the electron does not stay in one state of the Brillouin zone
indefinitely; instead, after a time, it will make a quantum jump to another
state in the Brillouin zone. This process is illustrated in Figure 8.2(a)

which shows the allowed states near the lowest energy of a Brillouin zone,.

with an excess electron occupying one of them. As a consequence of the
imperfection of the periodic field, there is a transition probability that the
electron will jump from the state which it occupies to any one of a number
of other states. This probability depends in a complicated way upon the
values of P for the initial and final states and is not restricted to such a small
group of states as that shown in Figure 8.2(a).! Figure 8.2(b) shows a
corresponding picture for a hole near the top of the valence-bond band.

1 A discussion of the transitions is given in more detail in Chapter 11,
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The transition of the hole comes about as a consequence of an electron
jumping into it as indicated by the arrows. In this case the Pauli exclusion
principle exerts an influence on the transitions, since an electron can make
only those jumps which carry it to a state not already occupied by another
electron. This means that the only jumps possible for electrons are those
which end in the hole; and whenever such a jump occurs, the result is
equivalent to a jump for the hole. Although the processes illustrated in
(a) and (b) have this great difference, the net result is that the transition
probability for the hole is approximately the same as that for an electron.
This may be seen as follows:
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Ax 4~ ELECTRON TRANSITIONS —T“)‘ Ax r—
N— . > =
(] T DY '
‘\\ ‘\ 'V ;'f
=)
T el
55 <]
T ™ t
° AV A o
17
< 2R <
L )
0
Py —> Py —
(a) POSSIBLE JUMPS OF AN ELECTRON (b) POSSIBLE JUMPS OF A HOLE
IN A LOW ENERGY STATE SHOWN IN A HIGH ENERGY STATE
SCHEMATICALLY SHOWN SCHEMATICALLY

Fic. 8-2—Transitions for an Electron and for a Hole.

In Figure 8.2(a) the one electron can make jumps to any one of, say,
A states. In Figure 8.2(b) each electron can make a jump to only one
state; however, there are now A electrons which may jump. Furthermore,
the probability of a jump to a vacant state is about the same for an electron
near the top as for one near the bottom of a band. (Discussed in Chap-
ter 11.) As a consequence, the probability that the hole in (b) makes a
jump corresponds to A electrons each having one possible transition whereas
the probability that the electron in (a) makes a jump corresponds to one
electron with A4 possible transitions. These two over-all transition prob-
abilities are thus comparable, a result which, as we shall later show more
fully, accounts for the fact that holes and electrons have approximately
the same mobility.?

2 In Chapter 1 we discussed the similar dynamics of holes and electrons. We here point
out the similarity of the effects of random processes upon them. In Chapter 10 we shall
show that their thermal equilibrium statistics are equivalent.
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For the purposes of this chapter, we shall suppose that only a small
fraction of the states in the conduction band are occupied by electrons, so
that we may disregard the possibility that a transition is prevented because
the end state is occupied. A similar assumption is made for holes. Ac-
tually the removal of these assumptions is readily accomplished in the
analytical theory; it would add unnecessary complications, however, to
treat the more general case in this chapter.

If the jump which the electron makes is due to thermal vibrations, it will
(according to the theory of transition probabilities) gain or lose energy each
- time it jumps. In this way, it can exchange thermal energy with the
vibrating atoms of the crystal and come to equilibrium. It is, of course,
meaningless to speak of one electron being at thermal equilibrium since
thermal equilibrium is a statistical situation in which some electrons have
large energies and some have small energies. However, if a large number of
electrons are present in a conduction band, their equilibrium distribution
is a definite thing which we shall discuss in the next two chapters. It is
worth mentioning that the thermal equilibrium distribution of electrons in__
a crystal, or of atoms in gas or any similar example, is independent of the
exact nature of the transition probabilities which permit it to arise. In
other words, no matter what the nature of the transitions is, so long as they
provide a means of exchanging energy, the system will eventually reach one
and the same end state of thermal equilibrium. The rate, however, at
which the end state is approached depends in detail upon the nature of the
transitions—an idea which brings us to the consideration of the mean free
time.

8.3 THE MEAN FREE TIME

As stated before, the theory of transitions or collisions presented in this
chapter is based on certain simplifying assumptions. In particular we
assume:

(1) The probability that the electron (or hole) makes a transition in any
small interval dt of time is dt/T where T is a constant.

This assumption has two independent implications: (a) The probability
of transition does not depend on the elapsed time since the last transition.
(b) The probability of transition does not depend upon the quantum state
occupied by the electron or hole. Both of these implications come from the
statement that the “probability parameter T”’, which has the dimensions
of time (seconds), is a constant so that it does not depend on the factors
mentioned in (a) or (b). By ‘““a constant” we mean, of course, constant
under given conditions of temperature and composition. Also T will not
be the same for electrons as for holes.

As we shall show T is the mean free time; the natural definition, how-
ever, for the mean free time is stated in words very different from those
employed in (1); for this pedagogical reason, we shall not call T the mean
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free time until, with the aid of equation (1) of Section 8.3, we have defined
the mean free time, denoted by Z, and proved it equal to T in equation (5)
of Section 8.3.

The second assumption is:

(2) The end state of the transition is independent of the initial state, and the
probability of arriving at any particular end state is proportional to the prob-
ability that the end state would normally be occupied in the thermal equilibrium
distribution.

What assumption (2) means is that no matter how the electrons are dis-
tributed among the quantum states at # = 0, as soon as each one has made
a transition, they will be distributed in the thermal equilibrium distribution.
(In other words, they cannot remember what they were doing before the
collision.)

Assumptions (1) and (2), together with the equations of Chapter 7,
furnish the basis from which we derive the equations for conductivity and
Hall effect. These final equations correspond to a physical picture, which
we shall now describe, inaccurately, in order to suggest the significance of
(1) and (2) in the later development. According to (1), the electrons are
accelerated by the applied fields for approximately a time 7; then they
collide. If these collisions produced only small deflections of the velocity
of the particles, then the condition after collision would be influenced by
the field acting before collision. According to (2), however, the collision
wipes out all memory of the pre-collision state of the particle. Thus the
behavior of the particles under the influence of fields is substantially that
which would occur 7 seconds after an instantaneous application of the
fields.!

Before defining the mean free time and proving its equality to the
probability parameter T in assumption (1), we shall attempt to make (1)
appear to be reasonable by giving a discussion of collision processes on the
basis of a particle model, According to this model, the electron moves as
a particle in a straight line path (or a curved path if electric and magnetic
fields are present) for a length of time and is then abruptly deflected, after
which the process repeats. These abrupt deflections are analogous to
collisions between molecules in a gas and may also be referred to as colli-
sions. In particle language, assumption (1) is equivalent to saying that

1 As we shall discuss in Chapter 11, neither assumption (1) nor (2) is in good agreement
with the best theories: the time between collisions depends in an important way on the speed
of the electron (or hole) and, after a transition, energy and direction will not be, on the
average, random as suggested by (2). If the time between collisions is properly averaged,
however, by procedures discussed in Chapter 11 (taking into account the variation of time
between collisions with velocity and the dependence of velocity after collision upon velocity
before collision), then the so obtained average 7 may be inserted in assumption (1) and
employed with assumption (2) and the analysis presented in this chapter will give the correct
results: that is, the same as those obtained by the more involved procedures of Chapter 11.
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the probability that the electron will suffer a collision is independent of how
long it has traveled since its last previous collision. This is intuitively
seen to be a reasonable result for the motion of molecules in a gas. Con-
sider a molecule selected at random, and call it molecule (a); although
molecule (a) has had a collision at some time in the past, the region of space
into which it is moving contains molecules whose paths were unaffected by
the previous collision of molecule (a). Thus the environment into which
molecule (a) moves is unaffected by the length of time molecule (a) has
been moving since its last collision, and, consequently, the probability that
it suffers a collision in the next increment dr of time should be independent
of how long it has been moving freely.?

The quantum mechanical theory of transition probabilities leads one to
the same conclusion: the probability that a quantum jump may take place
is also 4t/ regardless of how long the electron has stayed in the quantum
state. ; ,

We are now in a position to define and discuss the mean free time. We
shall do this first in the case of molecule (a) in a gas so as to have a specific
picture in mind. We follow the course of molecule (2) over a Jong period
of time T which starts and ends at instants of collision. During time T,
molecule (a) has C collisions (not counting the starting one), the intervals
between them being #1, 3, + -+, 2¢. These intervals are called “free times”,
during which the molecule moves freely uninfluenced by random processes,
and their average is the mean free time. This leads to the definition:

The mean free time, i, is the (unweighted) average of the free times between
collisions:

_htht- -tk
C

[The word (unweighted) is inserted in the definition to suggest to the
reader that some other averaging procedure might be employed. We meet
such a case in Section 8.7; and a paradox encountered there is explained
as being due to a difference in averaging procedures.] :

We must next study the distribution of the free times #; to f¢; as we
shall see their average is T; however, all values from zero to many times T
occur in the distribution.

The analysis is most easily visualized by considering not C successive
free times for one molecule, but instead one free time each for C molecules.
By assumption (1), any free time, no matter how it originates, has the same
statistical behavior so that the same distribution of free times will be
obtained for either case. Suppose that by chance all C of these molecules

i

= T/C. 1)

2 This problem is closely analogous to the coin which is about to be tossed. No matter
how many times it has come up heads in succession, the probability is always L thac it will
come up heads on the next throw.
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have collisions simultaneously (in pairs) with other molecules at ¢ = 0;3
we then follow each of these molecules until it has its next collision, record
its free time in our list of £, /3 to f¢; thereafter, we may disregard its sub-
sequent behavior since we have selected for study only the first free time
for each molecule after its # = O collision. The significant statistical
features of this situation can be derived by consideration of the number of
molecules, denoted by C(#), which have not collided up to time ¢ after the

I, C
3 dt
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Fic. 8-3—Dependence of the Number of Uncollided Molecules upon Time.

4 = 0 collision. How does C(¢) vary with time? Figure 8.3 shows how
the dependence is derived: at time ¢ there are C (#) molecules which are
uncollided; in an interval d¢ the probability that each of these will collide
is dz/t. [Assumption (1).] Hence, the number colliding in d¢ will be
simply C(#)dt/7, and during 4t the number of uncollided molecules will
decrease by this amount. Expressed as an equation

dC(t) = —C(t)dt/7. (2)
This is a differential equation for C(f) which can be integrated as follows:
—dt/t = dC(¢)/C(t) = dIn C(¥)
InC@#) = —t/t+a
C(t) = e%e " = Ce™I" 3)

the constant & being evaluated so that C(f) = C when # = 0. From this
expression we can find the number of mean free paths which end in 47 at £,
As discussed this number is C(¢#)d#/7 and is thus:

number of molecules
colliding = Ce t"dt/T. “)
between ¢ and / + 4t
3 Or, which is entirely equivalent, consider C collisions selected at random and measure time

for each molecule from the instant of collision, Or consider one molecule and C of its free
times, measuring time for each one from the instant of the collision which initiates it.
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Hence, among all the C collisions considered, the above number have a
free time of ¢ and, therefore, contribute ¢ times Ce */"dt/t, to the sum
t + 1o + -+ t¢. Adding this up over all collisions leads to a mean free
time given by

-_t1+t2+---—|—tc__lj”° i _
= C =ch 1Ce g/t = 7, )

(the integral

[t = o eremaem =« [ e =1 ©
being readily integrated by parts or found in the tables).

It is worth while to review briefly what the argument has been in arriving
at equation (5). First assumption (1) was introduced: (For a model like
a gas, arguments were presented to show that (1) was reasonable with the
probability parameter T being constant and independent of the time after
the previous collision.) It was not at that point stated that T was the
mean free time. Second, a mean free time  was defined. Third, the dis-
tribution of free times resulting from assumption (1) was evaluated and
from this distribution the value of { was computed. It was then found
that the value of  is 7.

The same mathematical results would follow from assumption (1) no
matter what model was used. We could equally well have used electrons
described either by the Brillouin zone scheme or the particle scheme. If
we had started with C uncollided electrons at ¢ = 0, we would have found
formulae (2) to (5) from just the same analysis. The same results would
apply for holes.

So far in this discussion, no use has been made of assumption (2). The
results in the next section, however, will depend upon it. As stated earlier,
detailed consideration of the processes leading to collisions will be discussed
in a later chapter.

8.4 BRILLOUIN ZONE TREATMENT OF AVERAGE VELOCITY,
MOBILITY, AND CONDUCTIVITY '

We must now apply the concept of the mean free time and the distribu-
tion of free times given by equation (4) of Section 8.3 to a calculation of the
current produced by an electric field. There are several ways of viewing
this problem and, since all involve ideas which are useful in gaining mSIght
into the conduction process, we shall compare them.

First is what we may call the Brillouin zone or distribution-in-momentum
method. This is the one which best adapts itself to detailed analytic cal-
culation when variations of T with the initial state are taken into account.
We shall, however, deal with it here in accordance with assumption (1)
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that 7 is constant. Before an electric field is applied, the electrons occupy
a set of quantum states near the lowest energy in a manner described in
detail in Chapters 9 and 10. This situation is represented schematically
in Figure 8.4(a) for electrons and 8.4(b) for holes. For the cases con-
sidered here, only a few electrons or holes are imagined present so that they
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Fic. 8-4—Effect of Electric Field, E,, on the Distribution of Electrons and Holes in
the Brillouin Zone.

occupy only a very small fraction of the states, inside the shaded areas, and
a negligible number have energies outside the shaded areas. Under
thermal equilibrium, this distribution is symmetrical so that just as many
electrons are moving to the right as to the left and the average values of
P and v are zero.

We shall now specifically consider the case of electrons assuming that
there are 7 of them present in the crystal, whose volume /" we shall later
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take equal to unity so that # will be the density or concentratica of elec-
trons (that is, number per unit volume). We shall find it convenient to
deal with the total crystal momentum of the # electrons which is

Py =Py + P+ - + P, (1)

The average momentum of an electron is evidently Pyot/7 and its average
velocity ¥ is

D= +vat-:-+v,)/n=Py/nm. (2)

because of the relationship P = mv which holds near the bottom of the

conduction band, as discussed in Section 7.5. The current density of each

electron, as discussed in Section 6.1, is (—e¢/#)v so that the current due to

the 7 electrons is
I=(—e/V)@1+va+ -+ vy) = (—en/ )b

= (—ne)v (for V =1). 3)

I

Under the influence of an electric field, which we take to be in the x-direc-
tion with component E,, all the electrons change their momenta according
to P = —¢E. This shifts the distribution to the left as shown in Fig-
ure 8.4(c). At the same time, collisions tend to restore the electrons to
the random distribution shown in (a). The steady state is reached when
these two tendencies cancel with a net shift of the distribution to the left.

We shall, therefore, calculate the change in time 4¢ produced in Piot due
to the field and due to collisions and by equating these find an equation
describing the steady state. We need, of course, consider only the x-com-
ponent. This gives

sztot = —neE.dt ) (4)

for the change due to the field. During the same time, a fraction d¢/7 of
the electrons suffer a collision according to assumption (1), and return to
the random state according to assumption (2). Furthermore, according
to assumption (1), the electrons colliding are a random sample of all the
electrons; they, therefore, eliminate just their proportional share of the
total momentum and reduce Piot by an amount

sztot = _P:ttotdf/'r- ' (5)

Equating the sum of these two changes to zero gives the steady state
condition

—Priodt/t — neE dt = 0
Pt = —neEsw (6)
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from which we readily infer for the vector field E that

P, = —neExr (7a)
P =Py/n = —cEx (7b)
U= —(evt/mE (8a)
I = (—ne)0 = (ne)(et/m)E. (8b)

These equations evaluate the current in terms of the constants T and m
which describe the behavior of the electron in the conduction band. Asis
indicated in Figure 8.4(c) they correspond to a displacement of the dis-
tribution of electrons in the Brillouin zone as shown.

Equations (8a) and (8b) can be re-expressed in terms of the conductivity
and the mobilizy. By definition the mobility is the ratio of average velocity
to electric field without regard to algebraic sign. Thus we have

Mn = €Ty/my, and U, = —pu,E 9)

where the subscript # shows that the mobility has been evaluated for
negative carriers, that is excess electrons. The conductivity is by definition
the ratio of I to E and is

o = 16T,/ My = neun (10)

and is thus the total charge density, again without regard to algebraic sign,
times the mobility.

Precisely similar relationships apply for holes. We shall use p, for
positive carriers, to represent the concentration or density of holes and also
as a subscript. The shift in momentum is again derived from the law
P = F. The sum Py, of P over the unoccupied states, or holes, will change
by —epEdi owing to the field and will change because of collisions by
—Pyo1dt/Tp. Hence the steady state will be given by a formula like
equation (5) for electrons and, as the reader may verify, the relationships
P = —mpvand I = (4e¢/¥7)v for holes (discussed in Section 7.6) lead to

Hp = €Tp/mp Up = +uE (11)
g = peuy. (12)

When both holes and electrons are present, as occurs in the intrinsic
range, the total current density is the sum of the hole and electron currents
and the conductivity is

¢ = nep, + peuy 13)
where we have used # and p for densities as follows:
n = density of negative carriers = electrons/cm?; (14a)

p = density of positive carriers = holes/cm?3, (14b)
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At this point in the exposition the reader may find it advantageous to
consider Figure 8.1 and, with its aid, review the argument up to this point.

The units used in this discussion are absolute electrostatic units. It
may be instructive to convert them to practical units and to consider some
typical values.! We shall use the subscript Z (for laboratory) to denote
practical units since p has already been required for holes. In terms of
the absolute electrostatic units, the mobility has the dimensions of cm/sec
per electrostatic volt/cm. Thus we have

u = er/m cm?/es. volt sec. (15)

For practical work fields are measured in volts/ecm and since 1 e.s. volt =
300 volts and the value of u in practical units is?

ur cm?/volt sec = p(cm?/e.s. volt sec) (1 e.s. volt/300 volts)
(1/300)cm?/volt sec = ev/300m cm?/volt sec. (16)

For 1, = 10® cm?/volt sec or u = 10% - 300, the mean free time T is
7=10%.300-m/e = 3 X 10° X 9.1 X 10728/4.8 x 10~1°
= 5.7 X 10713 gec. 17)

This time is so short that relaxation effects could not be observed even with
waves in the millimeter range.

A typical value of conductivity (for germanium) is 1 ohm™ em™. If
we express ¢ in practical units e = 1.60 X 1071° coulomb, then the con-
ductivity in practical units will be

I

OL = RELLL (18)
corresponding to
n = UL/ELML =1/1.6 X 107 % 10° = 6 X 1015 em™3. (19)

It may be worth mentioning that a conductivity of 1 chm™ cm™! is so
high that, in the body of the semiconductor, displacement currents (due to
changing dielectric displacement) may be neglected compared to conduc-
tion currents (due to the motion of holes and electrons) at least up to
microwave frequencies. (This is not true in the high resistance layers of
rectifying junctions, however.) In absolute e.s.u., the displacement
current is

(1/47)kwE = kfE/2 (20)

where w = 2xf is the angular frequency and « the dielectric constant; for
germanium « is 19. (A better value is 16; see p. 224.) The conductive

current is
oE =9 X 101 LE. (21)

1 A more complete list of formulae are given in equations (8) to (17) of Section 8.8.
2 Some rules for changing units are given in an appendix.
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Hence the ratio

displacement current u .
conduction current Kff2 X 9 X 10%0, = 1.05 X 10 fo (22)

Hence the displacement current is negligible up to f = 100 sec™? corre-

sponding to a 3-cm wave length in vacuum. .

[The same result can be obtained more compactly in M.K.S. units for
which, as discussed in an appendix, the conductivity o, is obtained from
o1 as follows:

oz ohm™ ecm™ X (100 cm/1 meter) = 1000, ohm™ meter™?

= o3y ohm™ meter . (23)

The ratio of displacement current to conduction current is
(8D/8t)/omE = xeqw/om. (24)

For o3 = 100 ohm™! meter™?, corresponding to 1 ohm™em™, and« = 19,
and o = 8.85 X 10712 this leads to equation (22). The value of w for
which the ratio of currents is unity is equal to the reciprocal of the relaxation
time for dissipation of charge density, as may be seen by calculating the
rate of change of charge density M.K.S. units:

ap/at =—-V-1=—-V" ouE = — (om/keo)V -D = —(ou/ke0)p  (25)

which leads to a rate of decrease in In p of (0p/3t)/ p= —0n/xe0 in agreement
with the result stated above.]

8.5 PARTICLE TREATMENT OF DRIFT VELOCITY, MOBILITY,
AND CONDUCTIVITY

In this section we shall derive the same relationships as in Section 8.4
but on the basis of a wave-packet or classical particle model. We shall see
that proper care must be taken in averaging over the free times in order to
‘avoid error by a factor of 2.

We shall again deal with electrons and simply indicate how the same
results may be obtained for holes. Thus we consider # electrons acting as
mobile particles in the semiconductor. According to assumption (1), each
electron has a probability d¢/7 of colliding with an imperfection in the
lattice (not with another electron; electron-electron collisions can be
neglected for most purposes in the theory of semiconductors). Each
collision, in accordance with assumption 2, brings the electron into the
thermal equilibrium distribution, statistically speaking, so that its direc-
tion and speed of motion are uncorrelated with those before collision. Asa
consequence, its path is an irregular random motion like that shown in
Figure 8.5(a). Each leg of this motion is a “free path”, and the average
of them is the mean free path. There is a relationship between the mean
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free path and the mean free time. In fact, if the average thermal velocity
of motion is v, we have
mean free path = 7. 1)

We shall return to a discussion of mean free paths in Chapter 115 in this
chapter, as already stated, we shall emphasize the mean free time.

_ (INTERVALS BETWEEN
COLLISIONS SHOWN
EQUAL FOR SIMPLICITY)

(a) RANDOM MOTION OF AN ELECTRON
IN A CRYSTAL

(b) COMPONENT OF ELECTRON MOTION
ADDED BY ELECTRIC FIELD

(C) COMBINATION OF (a) AND (b): ELECTRON
MOTION IN AN ELECTRIC FIELD

Fic. 8-5—Effect of Electric Field in Superimposing Drift on Random Motion.

Under the influence of an electric field, the free paths become curved;
in fact, they are segments of parabolas, like the trajectory of a falling body.
During a path of duration #, the net displacement due to the acceleration
(@ = —¢E/m) produced by the field is $as,%, as for a falling body.
Thus after C collisions, the path would be deformed from (a) to (c)in
Figure 8.5 by a displacement of 3a#® for each path or (C/2)ar,? for all
the paths if the free time for each path were #;. However, the free times
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are distributed according to the statistics given in equation (4) of Sec-
tion 8.3 so that the free time varies. The total displacement is thus

(@/2) (¢ + 2 + - - - + £P). ()

According to equation (4), a number C exp (—2/7)d!/x of free times have
durations between ¢ and ¢ + 4¢, and these contribute an amount

2Ce 4/ 3)

to the sum in (2). Adding up for all the possible free times gives

A N Bt =‘/;w 2Ceat)x
NPT b 20—(t/7)
—Cr fo (t/%) %D 4(¢/7)

= C7? jo‘ ) x%e%dx
= 2072, 4)

Thus the average value of #2 for each collision is 272 and 2 is not simply the
square of  which would be 2. The fact that the average of the square of
a quantity is greater than the square of its average is a generally valid result.
For example, on a 60-cycle line the average square of voltage is (110)2, but
the average voltage is zero and so is the square of the average. (Further
examples are discussed in Section 14.3.) Hence the displacement due to
the C collisions is

(a/2)2C7? = Car’. €))

These C collisions will require, on the average, a time Cr, since this is the
definition (1) of Section 8.3 of the mean free time. Consequently, the
average velocity due to the field is

vs = aCr’/Ct = av (6)

where vy is the average velocity with which the particles “drift” down the
field.

If the acceleration is due to an electric field E, its valueisa = —eE/m and
va = —(ev/m)E )

which is equivalent to expression (8a) obtained in Section 8.4 for 3.

The same expression for the current may be obtained for the particle
picture as may be seen with the aid of Figure 8.6. Here we consider the
number of electrons flowing across area A4 in time £, _All the electrons in
the volume A|va|# will cross the area carrying a charge of (—¢) from right
to left or ¢ from left to right. There will be some flow of electrons in and
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out of the volume owing to their random motions; this flow will cancel
out on the average, however, since the random motions alone produce no
net current. Thus if the density of electrons is # per unit volume, the net
charge transported in the direction of the field will be en|va| 4t giving rise to
a current density which is parallel to E and has the value (current density is
charge per unit time per unit area)

I = (envadi)/ At = envy = (ne®t/m)E 8)

again identical with the result of Section 8.4. Similar results will obviously
be obtained for holes.

7, \\
l VOLUME OF
21

ELECTRONS FLOWING
ACROSS A IN TIME dt

CHARGE = enAvgt
CURRENT DENSITY = €Nvy

Fic. 8-6—Relationship Between Drift Velocity and Current. 7

(We shall here, parenthetically, discuss a difficulty which can arise in
applying the mean free time concept carelessly to the computation of drift
velocity. We argue, erroneously, as follows: on the average, a particle
has a free time of 7. Suppose we observe it at a random time; on the
average we find it midway between collisions and, consequently, at a time
/2 since its last collision. Thus a random observation will find it with
velocity ar/2 and not ar.

(The argument is wrong. If we observe the particle at a random time it
will, on the average, have been free for a time T and will remain free for an
additional time T, so that it will have, on the average, a drift velocity ar, as
derived in equation (6) above. But the last sentence, which is correct,
appears to imply that the mean free time is 27. The factor of 2 comes
from a difference in averaging procedures: in (1) of Section 8.3, which
gives the definition of the mean free time, each mean free time is given
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equal weight. However, the selection of a sample of mean free times at
random instants, automatically weights the choice in favor of the long
mean free times, and, as a result, the average so obtained comes out 27.
This weighting process is mathematically closely related to computing 2,
which also leads to “2” by turning out to be 272.)

8.6 DISCUSSION OF HALL EFFECT IN PARTICLE LANGUAGE

The Hall effect has played a decisive role in revealing the mechanism of
conduction in semiconductors. The reason is that when data from meas-
urements of both the Hall effect and the conductivity of an impurity semi-
conductor are combined, it is possible to determine both the concentration
and mobility of the carriers; whereas, a measurement of the conductivity
alone gives only a product 7, or pup.

The Hall effect, discovered in 1879, occurs when a transverse magnetic
field is applied to a conductor carrying current. Under these conditions
it is found that in addition to the longitudinal electric field normally
present a transverse field is produced so that the current (which continues
to flow longitudinally) and the electric field are no longer parallel. The
effect thus produces a measurable transverse voltage across the specimen..
The cause of the effect is that the magnetic field exerts a force on the
electrons and deflects them sidewise. Before the development of the band
theory of solids, it was a mystery why the electrons which carried the cur-
rent were sometimes deflected so as to produce the effects expected of
positive charges. However, as we shall show, this is just the effect to be
expected for holes. We shall give first an introductory pictorial descrip-
tion of the Hall effect in terms of particles. For this purpose, we neglect
the random velocities of the particles (which are here regarded as classical
non-wave mechanical particles) by supposing that after each collision they
are brought to rest so that all of the motion they acquire is produced by the
applied fields. (It can be shown that the random velocities cancel out on
the average here, as they do for the case of conductivity just discussed in
Section 8.5.) Under these assumptions, the motions of positive and nega-
tive particles in combined electric and magnetic fields will be as shown in
Figure 8.7. A positive particle starting at the origin will be accelerated
by the electric field. As it gathers speed, it is subjected to a sidewise
thrust by the magnetic field according to the vector formula

F = (¢/c)v X H. 1)

This deflects it along the curved path until it suffers a collision and starts
over. As a consequence, the current and electric field deviate by an angle
8,, as shown. An electron is deflected to the same side: it acquires a
velocity opposite to a hole but since the thrust of the magnetic field is
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proportional to velocity times charge (which is also reversed compared to a
hole), the sidewise thrust is in the same direction. The current due to
electrons deviates in the opposite direction at an angle of 8, from the
electric field. The angles of deviation can readily be obtained on the basis
of this model, and are given by the equations

0p = evpH/mc = ppyH/c, 8, = ev,H/mc = pH/c )

when absolute e.s.u. and e.m.u. are employed. We shall omit the deriva-
tion here since we shall obtain the same formula more simply in the next
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Fic. 8-7—Flectron and Hole Current in Relation to Electric and Magnetic Fields.

section. This formula is familiar in connection with magnetron theory,
¢H /me being the angular velocity of an electron in a magnetic field. ,

As will be described later, the angle 8 (or its equivalent), together with
the direction of the deviation between electric field and current, can be
found in a Hall effect experiment. This leads to a determination of the
sign of the carriers .and an evaluation of u from (2), which can then be
combined with the conductivity data to find the concentration of carriers.

We shall next show that the Brillouin zone theory also leads to a devia-
tion between current and electric field and to the same formula for 6.
After that the Hall coefficient will be defined, the experimental procedure
for measuring it will be described and the results re-expressed in practical
units.
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8.7 BRILLOUIN ZONE TREATMENT; HALL, DRIFT, AND
MICROSCOPIC MOBILITIES

We next consider the effect of applying electric and magnetic fields simul-
taneously. This is shown in Figure 8.8. We consider in (a) and (b) the
case where only a few electrons are present in the Brillouin zone, cor-
responding to an #n-type semiconductor. Under equilibrium conditions,
with no field present, these electrons will occupy states distributed near the
center of the zone. As discussed in connection with Figure 8.4, we have
indicated the electrons by shading and have not attempted to show the
gradual dropping off of the concentration from the lowest energy values at
the center of the zone to higher energy values, but have instead drawn the
distribution as though all energies up to a certain state were equally
occupied and all those beyond that were unoccupied. For the purposes of
the qualitative exposition in this paragraph and the next, no error is intro-
duced by this procedure. (For the analytic purposes, employed later, we
do not refer to the figure.) In part (a) of this figure we show the effect of
an electric field alone. The electric field is supposed to act in the plus
x-direction so that the force on the electron acts in the minus direction.
As previously discussed, this results in a shift of electron distribution so
that the steady state value will be as shown in the shaded area. If all the
quantum states in the shaded area were filled and those outside were
empty, this shift would effectively add the electrons corresponding to
region A and subtract those corresponding to region B. Since the dis-
tribution of electrons is diffuse, however, the net result is merely to increase
the number of electrons in quantum states in the Brillouin zone near region
A and to decrease the number near region B. Now, as the figure indicates,
the velocities near A have a component to the left and those near B, to the
right, so that the net result of these changes is to unbalance the velocity
distribution and produce an average momentum P to the left for the

“electrons, as is shown. Since the electron has a negative charge, this is
equivalent to a current to the right in the direction of the applied field.

When a magnetic field is also applied, all of the quantum states move in
accordance with Figure 7.3(b), as previously discussed. This motion
shifts the group of points in A counterclockwise on the diagram as indicated,
and the distribution will be distorted into the form shown in Figure 8.8(b);
the average velocity vector will, thus, make an angle with the field, as is
shown on the figure. From this figure, it is easy to understand why the
angle between the current and the electric field is given by the magnetron
frequency times the mean free time. If an electron suffered no collisions,
then in the presence of crossed electric and magnetic fields its velocity
would run through a complete cycle of directions in the period correspond-
ing to the magnetron frequency. This means that if the electric field were
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suddenly removed and collisions were prevented, the shaded circle would
rotate about the center of the diagram with the magnetron frequency, as
has been described in connection with Figure 7.5. This process is termi-
nated in a mean life time T so that, as we shall show analytically below, the
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Fic. 8-8—Effect of Electric Field, E,, and Magnetic Field, H., on Electron and Hele
Distributions in the Brillouin Zone.

effective angle through which the distribution is rotated is T times the
magnetron frequency.

The formula for the angle between current and electric field can readily
be derived analytically from assumptions (1) and (2) of Section 8.3.
According to these, if the total current at any instant is I, then it will
decrease in time df due to collisions by an amount I4#/7, since during 4¢ a
random or representative fraction dt/T of the electrons is restored to the
thermal equilibrium state. At the same time, each electron is changing
its current because of the accelerations produced by the applied fields.
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We shall calculate the change in current due to these fields by summing the
changes for each electron. (The procedure is essentially the same as that
used in deriving equation (4) of Section 8.4.) If we multiply equation (16)
of Section 7.6, which expresses I in terms of I, E, and H, by 4t so as to find
dl, and suppose that this 4I corresponds to electron ““1” of the # electrons
we are dealing with, we obtain

dly = (/mV)Edt — I, X H(e/mc)dL. (1)
Summing over the # electrons and taking 7 as unit volume, we obtain
dl =dly + dl; + - - - + dl, = (ne®/m)Edt — I X H(e/mc)dt  (2)

for the change in I due to the acceleration of the fields during time 4.
(The reader should note that the effect of random motions is not apparent in
this equation, since only the total current I occurs in it.) The change due
to collisions is

dl = —Idi/~. 3)
For the steady state the sum of these changes must be zero, giving

(ne®/m)Edt — I X H(e/me)dt — Idt/x = 0
or

I = (né®v/m)E — I X H(et/mc). 4)

In order to simplify the algebra involved in interpreting this vector equa-
tion, we shall take the x-axis as parallel to I (rather than to E) and shall
compute the direction and magnitude of E. For these conditions the
vector product I X H is thus parallel to y with magnitude —I,H,, H being
parallel to the z-axis as before. Thus the x and y components of equation
(4) of Section 8.7 are:

I, = (1t /m)E, = oE, (5a)
0 = oE, — (—LH.)(ev/me) (5b)
or .
E, = I,/ (né*t/m) = I,/o (6a)!
E, = —(Iy/0)(eTH,/mc). (6b)

This shows that the E vector is turned clockwise in the x-y plane in respect

! Since no approximations have been involved in dealing with the consequences of equation
(16) of Section 7.6 and assumptions (1) and (2) in deriving (6a), we conclude that these
assumptions lead to the result that the power dissipation I,E; due to current I is independent
of H. This shows that magnetoresistance (an increase in resistance in magnetic fields) cannot
be derived from these assumptions. Magnetoresistance, theory shows, is connected with
variations in mean free time of the sort excluded by assumption (1) or with variations of the
energy surfaces from spherical form, See Chapter 12.
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to the I vector. For small angles this will give
0 = E,/E, = exH,/mc = uH,/c. (7

This is the same result which was discussed in connection with the particle
treatment and shown in Figure 8.7. '

The only effect of using holes instead of electrons is, as pointed out at
the end of Section 7.6, to change the coefficient of the H, term and thus
reverse the rotation. Of course, the values of T and m appropriate to the
carriers in question should be used. The diagrams showing the displace-
ment of electrons in the Brillouin zone, however, have quite a different
appearance and are shown in Figure 8.8(c) and (d). As explained for
Figures 7.3 and 7.5, the rotation produced near the top of the energy band
is opposite to that near the bottom, thus accounting for the opposite rota-
tions for electrons and holes of (b) and (d) of Figure 8.8.

In this treatment we have stressed the Hal/l angle 0 rather than the Hall
constant Rg. The reason is that the Hall constant, which we shall discuss
in the next section, measures the number of carriers, whereas 6, or rather
8/H, measures the mobility; and the latter quantity is much more funda-
mental in semiconductors, in which the number of carriers is a highly
structure-sensitive property, depending as it does on the impurity content.
Furthermore, §/H is the more readily measured quantity. (It will have
the same value even if the yz cross-section of Figure 8.9 discussed in the
next section is irregular or unknown in shape.) In order to describe the
mobility as measured by the Hall effect, we introduce the term Hall
mobility and the symbol

wE = c% = Hall mobility. 8

In general, the Hall mobility will not be equal to the mobility required in
the expression for conductivity. It has been possible only recently to
measure the mobility in terms of drift velocity by using the techniques
described in Section 3.1.  We shall introduce the term drift mobility defined
as the drift velocity of injected carriers divided by electric field.

average drift velocity

up = loctric field = drift mobility. )

The drift mobility as measured by the transmission velocity of a hole pulse
in a germanium filament may actually be different in concept from the drift
velocity discussed in earlier sections of this chapter; if the semiconductor
contains levels capable of binding holes tightly enough so that they are free
to move for only a fraction of the time, then the drift mobility will be only
a fraction of the microscopic mobility, which we define as the mobility of an
untrapped particle. The drift of color centers in alkali halide crystals is an
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example of this sort, and the drift mobilities are very low, being of the order
of 107 cm/sec per volt/cm.? Evidently such trapping effects will reduce
the drift mobility but will not affect the microscopic mobility or the Hall
n}obility.3 Trapping by donors and acceptors in germanium at room
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Fic. 8-9—Transverse Field Due to Hall Effect.

temperature will be negligible, as is discussed in Chapter 10; in silicon at

2 Gee N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals, Oxford Uni-
versity Press, 1940, p. 141, for a review of the work of R. W. Pohl and his colleagues on this
subject. See also F. Seitz, “Color Centers in Alkali Halide Crystals”, Rev. Mod. Phys., 18,
384408 (1946).

8 The earliest experiments of which the author is aware in which a comparison of drift and
Hall mobilities were made for the same particles were carried out during some unpublished
work with photoelectrons in silver chloride by J. R. Haynes, using techniques described by
J. R. Haynes and W. Shockley, “Report of a Conference on Strength of Solids”, The Physical
Society, London, 1948, p. 151. No evidence for trapping which reduced the mobility was
found at room temperature.
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room temperature and in germanium at lower temperatures, however,
trapping should produce distinguishable differences between the drift and
Hall mobilities. In Chapter 12, a review of mobility data is presented.

It may be worth while to point out the relationship of drift and micro-
scopic mobility to conductivity. Suppose we have an #-type semicon-
ductor with a certain density of excess electrons which are continuously
and frequently becoming trapped and then free again. Under these
conditions the conductivity will correspond to the untrapped density so
that we may write

ii

¢ = ¢ X (microscopic mobility) X (density of untrapped excess electrons)

I

eun X (total density of excess electrons).

Thus either of the mobilities may be used equally well provided that it is
properly paired with the appropriate density. This sort of a determination
of u from conductivity and total donor density is discussed in Section 12.9.

In the next section we shall describe the standard technique for carrying
out a Hall effect experiment and shall convert the formulae from the abso-
lute electromagnetic system employed here to other units. For this pur-
pose, we shall not distinguish between the different definitions of mobility.
In the following section we shall discuss the difference between micro-
scopic mobility, denoted simply as p, and Hall mobility and quote results,
derived later in Chapter 11, relating the two. A further discussion of this
difference is given in Section 12.9.

8.8 MEASUREMENT OF THE HALL EFFECT—
PRACTICAL AND M.XK.S. UNITS

The Hall effect is measured by using samples similar to those illustrated
in Figure 8.9; in these the current flows parallel to the long dimension,
which is supposed to be large compared to the transverse dimensions.!
When a magnetic field is applied to such a sample, it deflects the current
carriers to one side and causes the current to deviate from the direction of
the electric field. During the initial transient phase, while the magnetic
field is building up, a transverse current actually flows in the specimen and
carries charge across it from one side to the other. This charge accumu-
lates on the two opposite faces, making one positive and the other negative,
and sets up a transverse clectric field. After steady-state conditions have
been established, this tradsverse field just balances the deflecting effect of
the magnetic field and no further charge accumulation on the surfaces takes
place. The current then flows parallel to the long direction (x-axis) in
Figure 8.9. The electric field is not parallel to the x-axis and has a y-com-

1 For a discussion of the Hall effect in short samples see 1. Isenberg, B. R. Russell, and
R. F. Greene, Rev. Sci. Inst. 19, 685-688 (1948).
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ponent. In accordance with the results of the last section, the angle 8
between the current vector I and the electric field vector E is given by
equation (7) of Section 8.7. Part (a) of Figure 8.9 shows relative orienta-
tions of E, I, H and the specimen for the case of electrons and part (b) for the
case of holes. Because 6 is a small angle,® we may replace its cosine by
unity and its sine and tangent by 6.  (For brevity we shall omit the subscripts
y and z from I, and H,.) As discussed previously, 6 = evH/mc = uH/c.
Also because 0 is small, we may write [ = ¢E, for the current density.
Accordingly, the expression for transverse field may be simplified to

E, =0E, = 0l/c = (xu/co)HI ¢8)]

where the plus sign holds for holes and the minus sign for electrons.

The Hall coefficient Rp is by definition the coefficient of HI in the
foregoing equation. It gives the ratio of the transverse electric field to the
longitudinal current density times the magnetic field. It is given by the
equation

Ry =0/cH = dp/co = 1/n(xe)c (2)

and is thus seen to give a direct measure of the number of carriers present
and also their sign. (If both holes and electrons are present the more
complicated expression, equations (10) of Section 8.9, is obtained.)

Usually the Hall coefficient is measured in terms of the transverse voltage
produced by the transverse field between two directly opposite points on
the sample. Also the total current through the slab, denoted by I,
rather than the current density 7, is used. These quantities are related to
those in the previous equation as follows:

Ip =IWT, Vo—Vy=EW 3)

where 7 and T are the transverse dimensions of the sample. Combining
these with the previous equation we obtain

Vo —Vy=RyHIr/T or Ruy= (Vo — V1)T/HIy. €))

These equations are expressed in the absolute c.g.s. system of units so that
currents and voltages are to be measured in electrostatic units. Except
for this, the form given in the last equation is that used to measure Ry in
practical units. As defined in connection with the directions shown in
Figure 8.9, the sign of the Hall effect determines whether or not the con-
duction is by electrons or holes. We shall discuss the case where both holes
and electrons are present in Section 8.9.

Practical Units. We must next convert the Hall Effect formulae to the

2 At least so far as first-order effects alone are concerned.
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units ordinarily used in the laboratory:

cm, gram, sec_for mechanical quantities,
volts, coulombs for electrical quantities,
gauss or oersted for magnetic field.

The subscript L, for laboratory, will be used for quantities measured in
these units. Summarizing the previous results, which are expressed in
c.g.s. units and absolute e.s.u. and e.m.u., we have

Ry = 0/cH = 1/n(%e)c (5)
C‘RH‘G’ =pu=et/m (6)
7 = me|Rulo/e. @)

The Hall coefficient in practical units, denoted by Ry, is expressed in
cm?®/coulomb, that is, the reciprocal of a charge density expressed in
coulombs per cubic centimeter. This can be obtained from equation (5)
by eliminating the speed of light, ¢, and multiplying by a factor to convert
absolute electrostatic units of charge to coulombs. Denoting by er the
charge on the electron in coulombs we have ¢ = cer,/10 in accordance with
the customary definition of the ratio of these units. This leads to the
following relationship between practical and electrostatic Hall coefficients:

_ 1

1 ¢ e
T on(xer) n(xe)l0 10 n(ke)c

=9 X 10"Rg 8)

Ry

where we have used the customary approximation that ¢ = 3 - 10'” cm/sec.

In order to determine Ry from practical measurements, we shall first see
how Ry is obtained when currents and voltages are measured in practical
units. Denoting the total current through the specimen by I, we then
have

(Vg = V1) = (e — V1)1/300, Ir =3 X 10° ©)
and :
Ve = V)T (Vo — VLT
H Hlp 9 X 101 H (10)
so that we get
Ry = 103(V, — V1)L T/HIL. (11)

Equation (11) defines the value of Rz, in cm®/coulomb in terms of measured
quantities. Using the relationship Eyz = (Vo — V1)L/W and E.p =
I1/otW'T, one may rearrange equation (10) to obtain the angle between
electric field and current

(Vo2 — V1)1Tor,

= 107%R o H. (12)
I,

0 = E,L/E.L =
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Since the conductivity in practical units is equal to the charge density of
carriers in practical units times the mobility in practical units, we have an
easy way of obtaining the mobility in practical units as follows: -

or = nepur, = pr/|Re| ohm™ em™; ef, = 1.60 X 107° coulombs  (13)
pr = or|Rr| cm?/volt sec. (14)

This result for ur, which leads to the useful formula
0 = 1073y H, (15)

can be converted to an expression for the mean free time by using u = ev/m.
Equation (14) must then be multiplied by 300 to convert it to mobility per
electrostatic volt, and we thus obtain

T = (300m/e)pr, = 5.7 X 107z sec = 5.7 X 1078 R 0, sec. (16)

At room temperature, the thermal velocity of an electron is 107 cm/sec
(provided its effective mass is that of a free electron). Hence the average
distance it travels between collisions is

/=10t = 0.57 X 1078Rzoz, cm = (0.57uz) A 17)

where A =1 angstrom = 1078 cm. This gives a simple relationship
between mobility and mean free path applicable at room temperature.
(Mean free paths for silicon are discussed further in Chapter 11.)

M.K.S. Units. In M.K.S. units the basic force equation becomes

Fy = ey[Ep + var X Byl (18)
where the units are
Ejr = volts/meter (19)
Bjr = webers/meter? (20)
en = 1.60 X 1079 coulombs. (21)

A field of one weber/cm? is equal to 10* gauss. In terms of these units
the basic equations become

oym = nyenrupr ohm™ meter ™! (22)
ny = carriers/meters® - (23)
uy = metersz/yolt sec (24)
Ry = 1/nyen = meters®/coulomb (25)
6 radians = up By (26)

That the ratio of transverse electric field to longitudinal current density
times magnetic flux density gives the M.K.S. Hall constant may be verified
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as follows:

E E:ub ! 1
Rur yM M _ kM

IyBy  E.momBum  om  nuem

. @7

Equation (26) shows that mobility has the dimensions of 1/Bjs = meters?/
weber or meters?/volt sec because of the definition of the weber. The ex-
pressions for 7 and for / corresponding to (16) and (17) become

T = 5.7 X 10724y sec (28)
J = 5.7 X 107" upr meters = 5700up angstroms. (29)

8.0 MODIFICATIONS OF TEE HALL EFFECT FORMULA

As stated earlier, assumptions (1) and (2) of Section 8.3 are only an
approximation to the actual situation, in which the probability of a transi-
tion depends in a complicated way on both the initial and the end state.
When the variation of this probability is taken into account, it is found that
a different average mean free time, call it Ty, occurs in the Hall angle

0 = evgH/me (1
and in the mobility (call this average 7,):
p = eTu/m. (2)

For electrons in semiconductors at temperatures so high that thermal
scattering predominates, the times and mobilities are related by the
formula, derived as (28¢) in Section 11.4,
3z d 37 .
Tg = -— Ty an H = o M
H ) » » 8 I
As a consequence, the Hall coefficient, as given by equation (5) of Sec-
tion 8.8 in terms of measured values 6, o, and H, is
] +ergH m TH 1 3r 1

- = = 1H, 9.1 . (4
Ru oH me  név,H v, n(xe)e 8 n(ke) ®)

3

This is the formula usually used for Hall effect in semiconductors. For
simple metals and for very impure semiconductors, which have the electron
statistics of metals, Tz turns out to be the same as T, and the formula is
Ry = 1/nec. These results are derived in Chapter 11.

When both electrons and holes aré present, the Hall constant is a com-
plicated average of the Hall constant and conductivity for each type of
carrier. In Figure 8.10 we show the construction necessary to evaluate
the Hall constant when both holes and electrons are present. The mag-
netic field comes out of the paper, parallel to z as for Figure 8.7. Under
these conditions the hole current [, and electron current I, deviate in
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opposite directions from the electric field. The net current I must, of
course, have no transverse component across the specimen since such a
component would quickly set up charges and produce a transverse field
which would reduce the transverse current to zero. Although the net
transverse current is zero, the transverse electron and hole currents in-
dividually will not vanish and there will be a tendency for both holes and
electrons to be swept to one side of the filament as discussed in Section 3.2.
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Fic. 8-10—Hall Effect for Both Holes and Electrons. (Magnetic Field in +2
Direction, toward the Reader.)

For electric fields so small that no conductivity modulation is produced by
this effect, the densities of holes and electrons will have their equilibrium
values and the currents will be as shown in Figure 8.10. Our problem is
thus to evaluate 8 from the construction shown in the figure and to use this
value to determine the Hall constant in accordance with Ry = 8/cH,
equation (2) of Section 8.8. By convention, we shall regard an angle like
0, as negative. When both types of carriers are present, we have from
equation (13) of Section 8.4 ~

o = e(nun + pup)- (%)

Using the approximation employed for the Hall effect that cos 8, = cos 6,
= 1, we obtain a current parallel to E of

I, = I, + I, = (nepn + pepp)E,. (6)

The y-component of current is obtained by the approximation

sin 8, = 6, and sin 8, = 6, and by recalling that the Hall effect conven-
tion gives 1/, = —0 for Figure 8.10. Thus we obtain

Iy = — (In0n + I;nop)- )]
The values for 8, and 8, are defined in equation (2) of Section 8.6 as
0n = —matl/c, 017 = +I4pH/€- (8)
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From these equations we find that the Hall angle for the total current is

9 = —[y‘ - _ (nepnEopnH /) + (peppEsppH/c)
I (nepn + peup)Es

_ (=mwd® + pw®) (HJ <)
npy + Pup

©)

Substituting this in the formula for Ry gives (see also Prob. 11 p. 219)

Ry = & o (o) /)
oH  (nun + puy) (enun + epup)H
_nl‘nz + Pﬂ-pz —nb? +p
= - = g (10)
ec(nun + pup)” (16 + p)eec
where (using Haynes’ drift mobility data for Ge, see Section 12.9)
b = pn/up(=2.1 for Ge and =3.0 for Si) an

is the ratio of electron to hole mobility, 7 is the density of electrons (that is,
number/cm?®), p the density of holes, ¢ the charge on the electron, and ¢
the speed of light. The corresponding values of Ry in practical and
M.K.S. units are

-nb’ +p _ _—nub® + pu

Rp=—""TP o gy =
T b+ p)Pen’ M (nub + pu)Pes

(12)

where e, = 1.6 X 1072 coulombs. The measured value of Ry, is defined
"in equation (11) of Section 8.8. It may be readily verified that if conduction
is by electrons only (that is, p = 0) or holes only (that is, » = Q) this
formula reduces to equation (8) of Section 8.8 or Ry, = 1/n(4er). Mak-
ing allowance for the difference in Ty and 7,, modifies (12) to the form
; 3w nb® — ¥4
=% wrora a3)

This is the form frequently quoted in the literature. For an example of
the use of this formula in interpreting conductivity data, the reader is
referred to the paper by Pearson and Bardeen.!

One simple consequence of (12) should be mentioned in closing. A
p-type sample, which has # < p and, consequently, Ry, > 0, will, upon
heating, become intrinsic with # 22 p. Sincé 4 is >1, this will cause a
reversal in sign of the Hall coefficient at the temperature for which n = p /4%
This point of reversal is used as discussed in Problem 7 in determining 4.2

_‘ G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865-883 (1949).
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ProBLEMS

1. From the dxstrlbutlon glven by equation (4) of Section 8 3 compute
the average values of ¢, £, £, ¢*.

2. Obtain the general formula /* = # ! 7" by considering the integral
I(a) and its derivatives:

' I(a) =jo"° it = 1/a; P = (—1)"a ‘M(“)

3. In the long interval T of equation (1) of Section 8.3 find the total
time occupied by paths with free times between ¢ and ¢ + 4. 'This time
divided by T is the probability that an observation at a random instant
will select 2 mean free time with duration between ¢ and ¢ + 4. Prove
that the average of the mean free times selected in this way is 21.  (Com-
pare with the discussion at the end of Section 8.5.)

4. Show that if the free times all had exactly the same length ¢’ (this
would be a violation of assumption (1)), then the drift velocity would be
vd = —¢Et'/2m for electrons.

5. The lowest energy bands in a solid are very narrow since there is
hardly any overlap of the wave functions; on the other hand, the high
bands are relatively wide. Supposing that the mean free time is about the
same for the valence-bond band and the conduction band, which would you
expect to have the hlgher moblllty, an electron or a hole?

6. Suppose a magnetic field is instantaneously applied to a semicon-
ductor which is subjected to a constant E. There will be a short time lag
before the current reaches its new steady state value. What process will
determine this time?

7. The ratio of mobilities & is sometimes obtained from data on a p-type
specimen by using the temperature T, for which Ry =0, so that #6*—p=0.
For somewhat lower temperatures, all of the acceptors are ionized and p has
a “saturation’” value p, equal to the excess of acceptors over donors and # is
negligible. As the intrinsic range is approached, holes and electrons are
produced in equal numbers by the breaking of valence bonds so that
' p = ps + n. If the saturation conductivity line is extrapolated to To, 2
conductivity o, is obtained, whereas the actual conductivity is go. Show
that

g0 b (4

—_— b:
ge. 0 —1 or G0 — Oe

8. Verify the practical unit formulae of Section 8.8 by deriving them
from the M.K.S. expressions.

9. This problem is intended to illustrate some fundamental features of
magnetoresistance effects. Suppose for this purpose that the electrons in
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a crystal can be separated into two classes, with densities # and #’, relaxa-
tion times T and 7’ and both with the same mass. Show from (6a) and
(6b) of Section 8.7 that the Hall angles are

0 = tan™! (evH,/mc) = tan™ ! wt
0’ = tan™ (ev'H,/mc) = tan™! w1,

Carry out a calculation like that shown for. Figure 8.10 and show that
although there is no net transverse currents there are equal and opposite
transverse currents due to the individual classes. Show that if #’'t’ = 7,
the resistance, defined as power dissipation per unit volume for unit current
density, varies as

4 4 2(wr)® 4+ 2(wr’)®
4 + (o1 + w1')?

Show that if T = 7’ this ratio is unity for all values of H,. However, if
7’ = 107 it varies from unity to 202/121 = 1.67 as H, varies from O to «.

10. Analyze the side thrust on an n-type filament carrying current
in a magnetic field. Consider the fact that the net force per unit volume
due to the transverse field E, upon the electrons must be equal and opposite
to that on the donors, which are mechanically attached to the filament.
The electrons also transfer momentum to the filament by collisions. Show
that the condition T, = Tg corresponds to the case in which collisions trans-
fer no net transverse momentum to the filament. The problem of visualiz-
ing the details of momentum transfer for the electrons of an almost full
band so as to establish the mechanism for the force on holes is more difficult
but can be done by methods like those of Section 7.6. This problem also
shows that the procedure sometimes employed to obtain the Hall angle
formula by equating ¢E, to ev,H,/c or to ev B, is not fundamental since
it neglects momentum transfer by collisions.

11. Show that if &p is defined as the ratio of drift mobilities (Section 8.7)
and 4 as the ratio of Hall mobilities:

bp = upn/BDps bH = BHA[VHP
then the Hall coeflicient [equation (10) Section 8.9] becomes
Ru = (sup/ppp) (P — nbpbu)/(p + nbp)?ec.
Show that in Problem 7, the result becomes

ao/0e = bp(1 + bx)/(bpbr — 1).



CHAPTER 9

DISTRIBUTIONS OF QUANTUM STATES
IN ENERGY

0.1 ENERGY LEVEL DIAGRAMS FOR PURE CRYSTALS

For the purpose of dealing with the equilibrium distribution at various
temperatures of the electrons among the quantum states of the crystal, it is
necessary to consider the distribution in energy of the quantum states.
This quantity, denoted by N (&), is defined in the following way: Consider
a crystal of unit volume. Suppose that a complete list of the quantum states
and their energies were prepared for all the allowed quantum states in all the
Brillouin zones of the crystal. From this list, select and count all the
quantum states whose energies lie in some particular interval & to & 4 46
of energy; call this number d§. Then N(&) is defined by

N(&) = d§/d& or dS = N(6)d6. ¢))
Thus we have

Derinition of N(8): N(&) is the number of quantum states per unit
energy per unit volume of the crystal.

In accordance with the theorem of the conservation of quantum states
discussed in Sections 5.3 and 5.5, the number of quantum states in the
Brillouin zone is simply proportional to the size of the crystal while the
width of the energy bands is independent of the size of the crystal (that is,
the energy band width theorem, Section 5.3). Thus, the number of
quantum states per unit energy range for a crystal of volume / is simply
VN(&).

If the energy & falls in a forbidden band of energies, that is in a gap
between the allowed energy bands (see Sections 5.3 and 5.6), the value of
N(8) is zero. If & falls within an energy band, then the value of N (&)
may be obtained in principle as follows: Corresponding to the energy band
there will be one or more Brillouin zones. In each of these the values &
and & + d6 define two closely neighboring energy surfaces. In any
particular zone there will thus be a certain volume @7 of P-space between
the two surfaces. ‘The volume per allowed point in this space is 4%/7,
where 7 is the volume of the crystal (see Sections 5.2, 5.5, and 14.8, and
Figure 5.10), and each such point gives rise to two quantum states, one
with each spin. Hence, the number of quantum states in the range 46

220
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per unit volume of crystal will be
24Ve/ (B3 V)

4§ = %

= (2/h*)dVp. 2)
If several zones have overlapping energies, then the total number of states
in & to & + 46 is obtained by adding the contributions of the individual
zones. In connection with the theory of conductivity, it is found advan-
tageous to re-express 4% p in terms of the element of area of the energy
surfaces, which has the dimensions of P? and is denoted by 42, and the
energy difference 46 between two neighboring surfaces. The formula is

dyp = d&dﬂ/u (3)

where v = |v| = |Vp&(P)| is the speed associated with P at the point of
interest. The derivation of (3) will be found in Section 11.2 in connection
with equation (5), in which the formula is used; it is repeated here for
ease of reference.

As an example, we consider the number of quantum states per unit
energy near the bottom of an energy band. As discussed in Sections 7.5 .
and 7.6, we may use the approximation that near the top or bottom of an
energy band, the energy varies as P? or P’? where P = |P| and P’ = |P/|.
For simplicity, we suppose the lowest energy is at the center of the zone so
that according to equation (11) of Section 7.5

& = & + P2/2m. 4)
From this we obtain
46 = (P/m)dP. (5)

The volume of the spherical shell between P and P + 4P in P-space is
47 P%4P and it, therefore, contains

dS = (2/h%)4xP%dP 6)
quantum states. This can be expressed in terms of the energy by solving
(4) for P and (5) for PdP obtaining

P =[2m(& — &))" (7a)
and

PdP = mdé6. (7b)
These may be substituted in equation (6) to give
dS = (8x/k*)P%dP = (4x/h°) (2m)*(& — &) d6 = N(&)d& (8)
leading to the desired value for N(&):
N(E) = (4x/A%)(2m)* (& — &)™ 9)

This equation gives the number of quantum states per unit volume of the
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crystal per unit energy range for energies slightly above &g, the minimum
energy of the Brillouin zone. The total number of states having energies
less than a certain maximum value &,, is obtained by integrating N(&)d&
from &g to &p:

f ™ N(&)dE = %Z’% 2m)* (6, — 6)* = 4.5 X 102(E,, — 80)%, (10)
&

the numerical value giving number per cm® for energy in electron volts.
This formula is frequently used in the theory of metals in which it is
assumed that the energy band has the form (9) and that all the states
below a certain energy are occupied. Equation (10) can then be used to
calculate the energy of the highest occupied state.

Entirely similar results will be obtained for the distribution of states
near the top of a band. In this case, equation (4) of Section 7.6 or
& = 6, — P?/2m is used, and equation (9) is modified by replacing
(& — &) by (& — &)*. It should be mentioned that these results are
dependent on the same assumptions about the simplicity of the energy
surfaces as those employed in Section 7.5.

In Figure 9.1 the behavior predicted from equation (9) and certain
general considerations have been combined to show the qualitative features
to be expected for the distribution of quantum states in energy for diamond.
We consider a unit volume of crystal containing N, atoms. Three energy
bands are shown. The lowest corresponds to the 1s atomic level and is
occupied by the two core electrons per atom, shown for the carbon atom in
Figure 1.2. Since, as discussed in Section 5.5, the diamond structure has
two atoms per unit cell, two Brillouin zones are required to accommodate
the four core electrons per unit cell. The eight valence electrons per unit
cell similarly require four Brillouin zones which overlap to give rise to the
valence-bond energy band. If we assume that equation (9) holds near
the edges of the bands [a form similar to equation (9) should always hold,
provided m is replaced by a suitable effective mass], then the distribution
should appear as in Figure 9.1(a). Energy is plotted upward in this figure
so as to correspond to the energy band picture in (b). The number of
states in the valence-bond band is

s= [ N5, an

&

an element of the integration being shown by the shaded area. The core
electron band is narrow in energy and thus has a high value of N(&).
The distribution of quantum states in the conduction band has been
shown as continuing indefinitely to higher energies. This is in keeping
with the idea that the higher atomic levels, which produce the conduction
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Fic. 9-1—Distribution in Energy of the Quantum States.

energy bands, interact so strongly that the resulting energy bands cover all
possible higher energies, leaving no gaps.

Figure 9.1 is appropriate, so far as the valence-bond band and bottom
of the conduction band are concerned, to pure silicon and germanium.
However, it must be modified when impurities are present.

9.2 ENERGY LEVELS DUE TO IMPURITIES—DONOR AND
ACCEPTOR LEVELS

We shall consider first the case of a donor impurity, for example, a
phosphorous atom inserted in silicon. As discussed in Chapter 1, an atom
like arsenic or phosphorus has one too many plus charges for its share of
the four valence bonds. Therefore, it constitutes a positive charge in the
lattice. It also brings with it an extra electron which neutralizes this
charge but cannot be a part of the valence-bond structure. This extra
electron uses wave functions in the conduction band. As we have seen, an
electron near the bottom of this band behaves in the crystal in much the
same way as an electron behaves in free space, except that the electron in
the crystal may have an effective mass different from that of an electron in
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empty space. In accordance with this picture, we might expect it to behave
in the presence of the impurity much as a free electron would behave in the
presence of a positive charge. Detailed considerations of the wave mechan-
ical nature of this problem shows that this picture is essentially correct.!
The electron moving in the conduction band has modes of motion around
the impurity atom essentially like those which an electron in free space has
around a proton in a hydrogen atom. There are two important differences:
In the case of the hydrogen atom, the electron is attracted by the charge of
one proton. In the case of the phosphorous impurity, the electron is
attracted by the same charge. However, this charge is embedded in a
dielectric medium. Because of the polarizability and dielectric constant
of the semiconductor, the attraction of the donor impurity for the electron
is reduced from e2/7® to e?/kr? where x is the dielectric constant, ¢ the
electronic charge, and r the distance of separation. The other essential
difference is that the effective mass is not that of a free electron. This
effect is probably somewhat less important. As a consequence, the wave
functions for the electron about the donor impurity are like hydrogen wave
functions but for an atom with a much smaller effective nuclear charge.
The well-known formula for the binding energy of a single electron to a
nucleus is given by

2?m*e¢*Z2/h? = 13.6Z° electron volts. (1)

In this formula e is the charge on the electron, m* its effective mass which
we take as the free electron mass for purposes of calculation, 4 is Planck’s
constant, and Z is the nuclear charge. For the semiconductor case, Z is
equal to 1/k. Since x is 11.9 for silicon” and 16.1 for germanium,? the
binding energy is 0.10 electron volt for silicon and 0.05 electron volt for
germanium. The radius of the wave function or electron orbit is also
increased by a factor « and thus is so large that it overlaps many atoms as
shown in Figure 1.14.
The formula for the hydrogen-like wave function is

1 1 3% %2
¥ [ } I @

T V7 Lrao me*

where 7 is the distance from the ion and 4 is the radius of the first Bohr
orbit and has the value 0.529 X 1078 cm = 0.529 A (angstroms).
This bound state is removed from the other states in the conduction band

1 ;. Wannier, Phys. Rev. 52, 191-197 (1937); S. R. Tibbs, Trans. Faraday Soc. 35, 1471~
1484 (1939); S. Peckar, J. Phys. U. S. S. R. 10, 431433 (1946); H. M. James, Phys. Rev. 76,
1602-1610, 1611-1624 (1949); J. C. Slater, Phys. Rev. 76, 1592-1601 (1949); of which the
last is most pertinent.

2 H. B. Briggs, Phys. Rev. 77,287 (1950). See also J. F. Mullaney, Phys. Rev. 66, 326-339
(1944), H. B. Briggs and W. H. Brattain, Phys. Reo. 75, 1705-1710 (1949), M. Becker and
H. Y. Fan, Phys. Rev. 76, 15301531 (1949).
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by about the interval of 0.10 electron volt for silicon. As a result, each
donor impurity removes a state from the conduction band and establishes
it as a quantum state of lower energy. For most practical cases, the total
amount of impurity present is very small compared to the total number of
atoms, so only a very small fraction of the quantum states in the conduc-
tion band is reduced to lower energies. The hydrogen atom has, in addi-
tion to its lowest state, a series of higher energy levels, and these will be
present around the donor impurity also. However, these levels will lie
very close to the conduction band, and electrons will be so readily excited
from them into the conduction band that it is not necessary to consider
these higher levels further for the applications with which we are concerned.

The donor impurity atoms will have a similar effect upon states in the
valence-bond band, and one state at the bottom of the valence-bond band
will be moved to a lower level for each donor atom present. States at the
bottom of this band are, however, without interest because, at all tempera-
tures met with in semiconductors, these states are fully occupied.

Acceptor impurities, however, do have an important effect upon the
states in the valence-bond band. These impurities represent a negative
charge since their atomic cores are insufliciently charged to neutralize the
four electrons in their share of the valence bonds. Consequently, they can
attract a positive charge. As we have seen, a hole in the valence-bond
band has many of the attributes of a positive charge. Quantum-mechani-
cal theory shows that a hole in the valence-bond band, in addition to
behaving as a positive charge for Hall effect and conductivity, will have
modes of motion around an acceptor impurity of a type entirely analogous
to the motion of an electron around a donor impurity. As a consequence
of this, some of the states in the valence-bond band are raised to higher
levels by the presence of acceptor impurities.

In Figure 9.2 we show the effect of acceptor and donor impurities on the
quantum-state distribution. We consider unit volume of material so that
the numbers of quantum states are, in effect, densities (number per unit
volume). The valence-bond band is represented as having 4N, quantum
states, where, as before, N, is the number of atoms per unit volume of the
crystal. There are Ng donor atoms present and these depress Ny states
from the valence-bond band and from the conduction band to lower levels
as described above. Owing to the two values for the spin, these levels
actually are 2Nz in number. However, we must take into account the
fact that, if an electron is in a quantum state around one of the donor atoms,
it neutralizes this atom so that another electron cannot be trapped there
with the same binding energy. This means in effect that only Ny rather
than 2N of the states are available. (This feature of the effect of spin
upon the statistics of electrons in quantum states is described only approxi-
mately by the foregoing method. However, for purposes of this expo-

o e AR T B
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sition it is not necessary to use a more exact treatment. See Problem 2,
Chapter 16.) Similarly, the N, acceptor atoms remove N, states from the
valence-bond band, leaving a total of 4N, — Ng — N, quantum states in
the band. As is shown in the figure, N, states are pushed out of the
valence-bond band to the lower level, as previously discussed. The nota-
tion for the energy levels uses the subscripts corresponding to conduction,
donor, acceptor and valence-bond.
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Fic. 9-2—Energy Level Diagrams.

(a) Quantum state distribution including effects of donors and acceptors for an
n-type semiconductor.

(b) Energy level diagram showing locations and charges of impurities for a sample
with balanced impurities.

(c) As for (§) for an n-type sample at low temperature.

Diagrams like Figure 9.2(b) and (c) are frequently employed to describe
and analyze situations in which the distribution in space as well as energy is
important. In these diagrams the @ and © symbols represent energy
levels at donors and acceptors and also the net charge. The charge is
defined for the situation in which the valence-bond structure is complete
and no excess electrons are left over. For this case each donor represents
an excess positive charge. The donor symbol is located at the energy with
which the donor can bind an electron and is thus somewhat below the edge
of the conduction band. Electrons in the conduction band and trapped in
donors are represented as in Figure 9.2(c). A hole, due to an electron
missing from the valence-bond band, would similarly be represented by a
plus sign, and, since holes tend towards higher levels in diagrams like
Figure 9.2(c), a hole trapped to an acceptor would be represented by a plus
sign next to the acceptor symbol. It is evident from these definitions that
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electrical neutrality for diagrams like Figure 9.2(c) requires the vanishing
of the sum of the charges shown. Diagrams of this sort are used in
Chapters 4 and 12.

For high densities of impurities, new effects set in, which are associated
with pronounced overlapping of the wave functions of the impurity atoms.
This situation is closely analogous to those discussed in Section 5.3 in con-

TaprLeE 9.1 Enercies ix ELecTrON VOLTS

_ Silicon Germanium
&.— &, Experiment 1.12 — 3 X 1074T* 0.72
&, — &4 Theory 0.08¢ — 0.054° 0.05°
&a— 6, Theory 0.08¢ 0.05¢
&, — 64 Experiment 0.06° 0.013/
&a— &, Experiment 0.075¢ 0.013/
&s— 6, Bombarded Centers .. 0.046 3= 0.017
&a— 6, Heat-produced Centers e 0.04¢

¢ @G. L. Pearson and J. Bardeen, PAys. Rev. 75, 865-883 (1949). This value was deduced
from an extensive analysis of the temperature dependence of pn. See Section 16.3 for a dis-
cussion,

® Unpublished estimate by J. Bardeen.

¢ Using m = free electron mass, k = 13 for Si, x = 16.1 for Ge in eq. (1).

4 Reference (a), based on an electron mass m, = 0.67m.

¢ Reference (a). See also Figure 9.3 and text.

7 Preliminary analysis of early data by G. L. Pearson and W. Shockley, Phys. Rev. 71,
142 (1947).

? Preliminary results by G. L. Pearson.

nection with bringing atoms together to form a solid. As was shown in
Figure 5.4, when the atoms approach close enough, appreciable splitting of
the atomic energy levels occurs, and it becomes appropriate to deal with
the electrons as being in wave functions corresponding to states in the
Brillouin zone. A similar effect will occur with the wave functions around
the impurities. As the impurity density becomes higher, the wave func-
tions overlap more and finally form a band of energies. Electrons in these
states will then conduct in the same way as do electrons in a metal. In
fact, the situation closely corresponds to that of an alkali metal which may
be thought of as an array of small positive ions neutralizing a space charge
of electrons moving in free space. In the semiconductor there is a random
array of donor (or acceptor) ions neutralizing a space charge of electrons
(or holes) moving, not through free space, but in the manner appropriate to
their states in the Brillouin zone. Evidence for this type of behavior is
found in both #- and p-type silicon and germanium. Samples of high
impurity content have been observed to have substantially metallic
behavior with numbers of carriers which are independent of temperature at
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temperatures below the intrinsic range. Examples of this behavior are
shown in Figures 1.10 and 1.11 and are discussed further in Chapter 11.

On the basis of analyses of Hall effect and conductivity as a function
of temperature, values have been determined for a number of the energy
parameters discussed in this section. These are quoted in Table 9.1
together with explanatory remarks and references. The data for germa-
nium is of a preliminary character.
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Fic. 9-3—Dependence of Ionization Energy of Impurity Centers upon Density.

Pearson and Bardeen find that for silicon the ionization potentials
&, — &4and &, — &, vary with impurity concentration in the way shown
in Figure 9.3. They interpret the decrease with increasing concentration
as being due to the electrostatic attraction of other donors for an electron
which has escaped from its own donor.  This attraction reduces the average
energy of an electron which has escaped from its own donor so that the
jonization potential for its escape is reduced. They find that the data for
holes in Figure 9.3 can be fitted by the formula

6o — &, = 0.08 — 4.3 X 1078N,* electron volt (3)

from which the solid curve is drawn. The value of the coefficient is of the
right order of magnitude as may be seen by calculating the electrostatic
potential due to one ion at a radius equal to half the average distance
between ions. This radius will be approximately 1N, = r. The poten-
tial at that radius is

4.8 X 10710

e !
L electrostatic volts = 300 ————— volts
kr 11.9r

=12 X 10781 = 2.4 X 1078N,* volts.  (4)
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In their calculation a more detailed procedure is used which takes into
account the average potential of the electron at points nearer the other ion
and a value of 3 X 107N, is obtained.

It has been pointed out by Seitz® that there are objections to the pro-
cedure used by Pearson and Bardeen due to the fact that the wave functions
implied in their analysis are not orthogonal. Seitz’s investigations in-
dicate that the interpretation of Figure 9.3 may involve quite subtle effects.

ProBLEMS

1. Obtain formula (10) of Section 9.1 by considering a sphere in mo-
mentum space with radius P, given by &, = P,%/2m.

2. Calculate the first and second ionization potentials for substltutlonal
impurities differing in valence by two from silicon and germanium taking
24.5 electron volts as the first ionization potential of helium. Compute
the radii of the wave functions and compare with the lattice constant for
the case of one bound electron.

3 Personal communication.

e



CHAPTER 10

FERMI-DIRAC STATISTICS FOR SEMICONDUCTORS
10.1 THE FERMI-DIRAC DISTRIBUTION FUNCTION

In this section, the effects of thermal agitation in distributing the elec-
trons among the various quantum states will be described. We shall
consider first the state of affairs at the absolute zero of temperature and
then see how this is modified by the excitation of electrons from quantum
states of lower energy to those of higher energy. The population of
quantum states at various energies can be described in terms of the Fermi-
Dirac distribution function, which is discussed in the first part of this
section. This distribution function is generally applicable to electrons in
the sense that it is independent of the detailed nature of the distribution of
quantum states in energy. In the latter parts of the section, the Fermi-
Dirac distribution function is applied first to a hypothetical example with
only 36 quantum states and 20 electrons in order to illustrate the general
features in their simplest form. This example is followed by an application
of the methods to the distribution of quantum states in energy appropriate
to an impurity semiconductor.

At the absolute zero of temperature, the electrons fall to the lowest
energy states available to them and fill these up subject to the limitations
imposed by the Pauli exclusion principle. As a result all the quantum
states below a certain energy are filled and those above that energy are
empty. If thermal agitation is present, however, electrons will tend to be
excited to higher states. On the basis of statistical mechanical theory, this
tendency is expressed in terms of energy by the quantity kT which repre-
sents the average thermal energy of a one-dimensional oscillator at tem-
perature T. Accordingly, electrons which at absolute zero have energies
only about kT less than empty states may be excited to these higher states.
However, electrons having energies many times &7 less than empty states
have an almost negligible probability of being excited. Thus for the
equilibrium distribution, the sharp division between filled and empty
states becomes smeared out into a transition region about 2kT wide at
higher temperatures.

This situation is described in detail by the Fermi-Dirac distribution
function. This function, denoted by the letter f, depends upon & and T
in a way shortly to be discussed. The values of f range from zero to unity
and are interpreted as follows:

230
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The value of the Fermi-Dirac function f is the probability that under thermal
equilibrium a quantum state of energy & is occupied by an electron. 1t is,
therefore, the average value of the fraction of all the quantum states of energy
& occupied by electrons.

The significance of the properties just described will become more
apparent in terms of the examples
discussed below.!

The function f is plotted in
Figure 10.1 and is seen to vary
t om zero for high energies to
unity for low energies. It makes -
the transition from values nearly
equal to zero to values nearly
equal to unity over a range of
energy equal to about 4k7. The
energy &p, for which f takes on
the value %, is called the Fermi
level.

For purposes of comparison with | -
energies at room temperature, a .
scale in electron volts is also shown. \
At room temperature, T = 300°K,
kT corresponds to an energy of ° 256
0.026 electron volt. It is sometimes f( KT F)
also convenient to compare these PRORNERGY &18 OCCUPIED
energies with the energy of light
quanta. In Figure 10.2, we com-
pare the energy scales in terms of
degrees Kelvin, electron volts, wave lengths in angstroms, and frequency
v of the light quanta. .

The statistical nature of the Fermi-Dirac distribution function should be
pointed out. What f prescribes is the probability that a quantum state of
given energy be occupied. If, for example, the system being considered
has six quantum states at the energy for which f = %, then under equi-
librium conditions there will be on the average three electrons in these
states. However, this number will fluctuate as electrons make transitions
in and out of the states as a result of thermal agitation, and in fact for
&« of the time the quantum states will be filled with six electrons; for &
of the time they will contain five electrons; for %, four; for 3%, three;
for 33, two; for £, one and for ¢ of the time all the states will be empty.
For this case, with only a small number of states involved, the statistical

I

T
°

e~ - mem p ==
<

ENERGY, & —>
o
m
-

Fic. 10-1—Fermi-Dirac Distribution
Function.

:
1 An outline of the statistical mechanical theory of the Fermi-Dirac distribution function
is presented in Chapter 16.
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fluctuations are large. In a semiconductor, however, we are generally
concerned with groups containing 10'® or more states. For such large
numbers as these, the statistical fluctuations are negligible on a per-
centage basis for the purposes of this chapter.

The mathematical form of the Fermi-Dirac distribution function gives
complete symmetry to holes and electrons as will be shown below by
consideration of its mathematical form. If, as is indicated on Figure 10.1,
the energy level for which f =  is denoted by &, called the Fermi level,
then the value of f at energy & is given by the formula®

1
1+ exp (6 — &7)/kT]

As explained previously, the value of f gives the probability that a
quantum state at energy & is occupied. If & is larger than &F by several
times &7, then the exponential in the denominator is large compared to
unity and f takes the approximate form

f~exp[—(& — &F)/kT] for & > &p. 2)

f=1((6 — &¢)/kT] =

)

This approximation gives the same distribution of electrons as do the
“classical” statistical mechanical distributions of Maxwell and Boltzmann.
We shall refer to it and to the corresponding approximation for holes, dis-
cussed below, as the classical approximation. ‘

On the other hand, if & is less than &, the exponential in the denominator
is small and the approximation (1 + ¢)™' &2 1 — & may be used giving

f~1—expl(&6 — &p)/kT] for & < &p. 3)

Thus for energies much above &, f approaches zero as exp (—A&/kT)
where A& is the height above &r. Below &p, f approaches unity, the dif-
ference between f and unity being given by the expression exp (—A&/kT)
where A& is now the energy below &p.

Now, if f is the fraction of quantum states occupied by electrons, then
obviously 1 — £ is the fraction left vacant or, in other words, the fraction
occupied by holes. The approximation (3) thus shows that the probability
of finding that a quantum state is occupied by a hole at A& below &F is
just equal to the probability of finding a quantum state occupied by an
electron at A& above &p. This result is valid in general and not merely
for approximations (2) and (3). If we write f, = 1 — £ for the distribu-
tion function for holes, we find by straightforward algebraic manipulation

1
" 1+ exp [(EF — 6)/kT]

2 As (1) shows, f is a function of three variables 5, &rand T. In cases where T and & do
not vary, we shall sometimes write f as simply f or £(6).

f,=1£,[(6 — Ep)/kT] = 1 — £ 4)
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which shows on comparison with (1) that £, is the same function of energy
measured downward from &p as f is for energies measured upwards. In
other words, the function f of Figure 10.1 has a center of symmetry at
5 = 55' and f= %.

The functions f and f, are each functions of the single variable
(& — &F)/kT. In many cases, however, & and T are constant and the
only variable of interest is & or P upon which & depends. 1In such cases we
may for brevity write the functions in one of the following forms:

- E=1(8) = fl&6(P)] = £(P) (32)
f, = £,(6) = £,[6(P)] = £,(P), (5b)

the latter forms being specially adapted for use with quantum states in the
Brillouin zone. This notation is not mathematically consistent but should
cause no confusion.

One of the principal problems in determining the equilibrium distribution
of the electrons in the quantum states arises in connection with the location
of the Fermi level & on the energy scale. As will be discussed below, the
location of & is determined by: (1) the distribution of quantum states for
the system under consideration; (2) the total number of electrons in the
system; and (3) the absolute temperature. The temperature is an im-
portant variable in determining the location of the Fermi level for semi-
conductors, the situation here being quite different from that in metals for
which the location of the Fermi level is substantially the same at all
temperatures. Once the Fermi level has been determined for a given
temperature, however, the distribution of electrons in energy can be
obtained directly by combining the values of N(&), the number of quantum
states per unit energy range, with f{(& — &p)/kT), the fraction of these
that are occupied. Detailed examples of these procedures are given below.

Under conditions in which &p is substantially independent of tem-
perature, the temperature dependence of f for values of & which differ
from &p by several times #7 can be approximated by equations (2) or
(3). For each of those the number of electrons or holes varies simply as
exp (—A&/kT) as discussed previously. This type of behavior leads to a
straight line plot for In f vs 1/7 as mentioned in Chapter 1, with A& giving
the slope or activation energy. However, in order to determine what
A& means in terms of the energy-level diagram, it is necessary to know the
location of &p. This subject is investigated below.

10.2 FERMI-DIRAC STATISTICS FOR A SIMPLE MODEL

Rather than discuss initially the case of a semiconductor whose quantum
state distribution is represented by Figure 9.2, we consider a small system
with only 36 states and 20 electrons. The advantage of dealing with a
small system is that illustrative distributions of electrons can be shown in
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detail rather than in analytical form. For the small numbers involved,
statistical fluctuations are important and should be considered; we dis-
regard them here, however, since the general features to be brought out are
applicable for large systems where fluctuations are unimportant. The
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Fic. 10-3—Quantum State Distribution and Fermi-Dirac Distribution Combined to
Give Equilibrium Distribution.

quantum state distribution, Figure 10.3, has been drawn to represent
approximately two energy bands, so that it has some similarity to the
distribution in a semiconductor.

In Figure 10.3(a) we represent the situation at the absolute zero of tem-
perature. At this temperature the electrons will attempt to occupy the
lowest quantum states; however, because of the Pauli principle that not
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more than one electron may occupy a given state, they will fill up states to
relatively high energies, as is shown. At the absolute zero of temperature,
the transition of the Fermi function from zero to unity will be infinitely
sharp, as a result of which all of the states above the level &f are empty
and all of those below are filled. Since the system considered contains 20
electrons as shown, the Fermi level must lie between the energy levels &,
and &;,. If it were drawn below &,, the system would contain a maximum
of 18 electrons, and if it were drawn above &, it would contain a minimum
of 24 electrons.

For higher temperatures, however, it is found that the Fermi level must
lie below &,. This can be understood by considering (b), for which #7 is
comparable to the spacing between levels in the upper group. For this
case, the Fermi level is drawn as though it were precisely at the energy &,.
Under this condition, on the average, half of the states at &, will be occu-
pied. Since electrons are excited well above the Fermi level for the case
shown, there is an appreciable probability of finding electrons at energies
& and &, and the expected numbers are approximately one at each of these
higher energy values. Of course, while the situation represented in (b) is
only one of a large number of possibilities which are simultaneously repre-
sented by the Fermi function, it has been drawn so as to represent correctly
the average behavior to be expected so far as numbers of electrons at each
energy are concerned. Accordingly, we will find an average of three
electrons in the upper group. On the other hand, the lower group of quan-
tum states lie so far below the Fermi level that the probability of finding a
hole in them is negligible for the situation represented in (b). Conse-
quently, we see the total number of electrons for this case is 21 or one higher
than the required number. In order to produce the desired number of
20 electrons, it is necessary to shift the Fermi level downwards as is shown
in (c). This downward shift of the Fermi level with respect to the dis-
tribution of quantum states decreases the probability that any state is
occupied by an electron, as may be easily seen from the shape of the Fermi-
Dirac distribution curve. As a consequence, the shift downwards of (c)
compared to (b) decreases the probability that the states in the upper
group are occupied; and if the correct shift is made, the probability will
be such that on the average only two electrons will be found in the upper
group and thus the required number, 20, will be achieved.

As mentioned before, the shift of Fermi level with temperature is a
characteristic feature in the behavior of semiconductors. It is quite
different from the situation in metals where the Fermi level at higher
temperatures comes at very nearly the same level as it does at absolute zero.

At still higher temperatures, the situation for our simple example will be
as shown in (d). In this case £#T is comparable to the spacing between the
two groups of quantum states. Under these conditions, some electrons
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will be excited from the lower group to the higher group, and in order to
keep the total number of electrons equal to 20, the Fermi level has been
moved still farther down and nearer the center position between the two
groups.

We must next consider the extension of these results in analytical form
to the quantum state distribution of a semiconductor.

10.3 FERMI-DIRAC STATISTICS FOR A SEMICONDUCTOR

An essential condition to be met in the interior of a semiconductor is that
of electrical neutrality. This condition follows from the well-known
theorem in the theory of conductivity that the net charge density within a
conductor at equilibrium must be zero.  As applied to a semiconductor this
requirement is equivalent to that used in Section 10.2, namely, that there
must be a fixed total number of electrons in the quantum states. We shall
first consider the factors which determine this number and next see how
the Fermi level must be adjusted to meet the requirement.

Since we are interested in relatively small deviations from the perfect
valence-bond structure, it is convenient to deal not with the total number of
electrons, but instead only with the net excess over the number required
exactly to fill the valence-bond structure. This net excess number of
electrons per unit volume is made up of four contributions:

7 = number of excess electrons in the conduction band (that is,
not bound to donors) per unit volume of crystal;

nq = number of excess electrons in bound states about donors per
unit volume of crystal;

p = number of holes in the valence-bond band (that is, not
bound to acceptors) per unit volume of crystal;’

Pa = number of holes in bound states about acceptors per unit
volume of crystal,

If all these quantities are zero, the valence bonds will be complete and
there will be no excess electrons. If they are not zero, then the net excess
number of electrons is clearly

n+ Ny —p = Pa )

In addition to the four densities just defined, a number of others will be
required in discussing the statistics of this chapter. For convenience we
tabulate them below, although N, and N, will not be precisely defined until
later. For brevity we use “density” to replace “number per unit volume”.

If the valence-bond strucrure were perfect and there were no excess
electrons, the crystal would not, in general, be neutral because of the
localized charges of the donors and acceptors. As discussed in Chapters 1
and 9, when the valence-bond structure is perfect around a donor atom,
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TasLe 10.1

Positive Charges
2 = density of holes in valence-bond band
pa = density of holes bound to acceptors
Pr=p+ Pa
Ny = density of donors
Negative Charges

n = density of excess electrons in conduction band
ng = density of excess electrons bound to donors

m=n+ng
N, = density of acceptors
Other Densities .
N; = number of atomic sites per unit volume
N, = N, (T) = effective density of states in conduction band

N, = N, (T) = effective density of states in valence-bond band

the latter represents a localized positive charge and an acceptor represents
similarly a net negative charge. For donor and acceptor densities of Ny
and N, this means that there would be a net charge density in the semi-
conductor of e(Ng — N,) if the valence-bond structure were complete.
Since (1) represents the excess electrons over a complete valence-bond
structure, the net charge density, which must vanish, is given by

e(Nd - Na) - e(n +ng—p— pa) = 0. (2)
This can be rewritten as
n+na—P_Pa=Nd_Na (3)

which states that the net excess of electrons is just equal to the excess of
donors over acceptors (a situation discussed in connection with Figure 1.9).

The values of 7, n4, p and p, are determined by (1) the distribution of
quantum states in energy, (2) the value of &p, and (3) the temperature.
The appropriate equations are obtained as follows: In the energy range
d& there are 4§ = N(&6)dé quantum states. A fraction f[(& — &F)/kT]
of these are occupied, leading to

(& — &r)/kTVS = 1{(& — &F)/kTIN(6)dE #)

electrons in states in the range d6. If this quantity is integrated over a
range of energies, such as &; to &; shown in Figure 10.4, which covers the
donor states and the conduction band, it will give #4 plus #. Thus we shall
have '

62
ny =1+ ng = j; f((& — &) /kTIN(6)d6. (5)

The exact value of &; is unimportant since f approaches zero rapidly at
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high energies. In fact, f is negligible except near the very bottom of the
energy band. This is illustrated in part (b) of the figure in which N(&)f
and N(&)f, are plotted, and it is seen that the important parts of the
integrals come near the edges of the bands. This subject will be dealt with
in more detail later. A similar calculation gives the number of holes:

(N
pe =2+ Pa =J;3 £,[(6 — &p)/kTIN(6)dE 6)
(b) (¢)
(o

s NCf( KT )
LD -
E—s257 Ny = Ndf(——si f‘)
0 FEIN(6)—>

HORIZONTAL SCALE ENLARGED
COMPARED TO (8)

0 F—> 05 Lo
1
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Fic. 10-4—Distribution of Quantum States and Densities of Electrons and Holes
for an n-Type Semiconductor.

(a) Distribution of Quantum States in Energy for an n-Type Semiconductor.

(b) Fermi-Dirac Distribution.

(c) Electrons and Holes per Unit Volume, per Unit Energy, and Formulae for
Densities.

where &3 to &4 includes the full band and the acceptor levelsand f, = 1 — £
(given by [equation (4) of Section 10.1]) is the probability that a quantum
state of energy & is vacant (that is, occupied by a hole).

For a given temperature T, both #; and p; of equations (5) and (6) are
functions only of &p. Hence the equation

ng— pr = Na— N, @)
may be regarded as containing only one unknown, namely &p, since Ny, N,

and the distribution N(&) may be regarded as specified by the nature of the
semiconductor considered, the situation being similar to that discussed in
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connection with simple model containing 20 electrons of Figure 10.3. 1In
Chapter 16, some detailed examples of solving for &p are given. In this
section we shall indicate only how #, and p, vary in general and then
describe the final statistical results. )

In the integral for 7, the integration extends over the Ny donor levels.
These are all supposed to lie at one energy &, for which the f has the value
f[(&4 — &F)/kT]; hence, the integral gives for the number of electrons in
the donor levels the value

1q = Nf[(6a — &F)/kT] ®)

as is indicated on Figure 10.4.

The number of electrons in the states in the conduction band is obtained
by an integration over N(&) near the bottom of the conduction band.
The situation is simplified by the fact that, for most cases, &5 lies well
below the bottom of the conduction band so that approximation (2) of
Section 10.1 may be used. This enables us to write

_ esrikr [ —&/kT
n=e : N(&)e dé. )

Since the exponential decreases by ¢~ for each increment 4T of &, we may
limit, as a rough approximation, the integration to the interior of the
energy surface in the Brillouin zone for which & — &, = kTor P?/2m = kT.
Since T is very small compared to the width of the energy band, the
approximation [equation (11) of Section 7.5] & = &, 4+ P?/2m may be
used so that the energy surface is a sphere containing a volume 4xP?/3
where P?/2m = & — &, = kT. This sphere contains (2/4%)(4xP3/3) =
87 P%/34% quantum states per unit volume of the crystal. Since in this
volume exp (—&/kT) is approximately exp (—&./4T), we may approxi-
mate theintegral by exp (—&,/kT) times 8xP2/34%. Writing P= (2mkT)%,

n o e~ EE N IRT (8 /3Y 2mk T/h%)%. (10)
The exact integration carried out in Chapter 16 gives
n= e—(&c—&F) /kT2(27rka/h2)% - Nce——(éu—-&F) /kT, (11)

a result about one-third larger. Comparing this with expression (8) above
for n4 and using approximation (2) of Section 10.1 for f, we see that the
conduction band behaves like a group of states localized at energy &,
the number in the group being not Ny but instead

N, = 2Q2emkT/E?)%* = 4.82 X 1013T% cm™3, (12)
[A factor (my/m)* is to be introduced if the effective mass is not m.] N,

may be referred to as the effective density of states in the conduction band.
The expression for # is valid only when & is less than &g by several times



10.3] THE GENERAL CASE FOR THE FREE ELECTRON MODEL 241

kT. At room temperature, with 7 taken as the mass of the free electron,
N. = 2.41 X 10*® cm® or about 1/2000 the atomic density. N, varies
slowly with T compared to the exponential functions involved in the theory
znd can be regarded, for many purposes, as substantially constant.
Precisely similar calculations may be made for p, and p giving

Pa = Naofp[(&s — &)/kT] = Nof[(6r — &4)/kT] (13)
P = 2(27rmkT/h2)3/ée—(6r—5v)/kT — Nve—(&F—ﬁm)/kT. (14)

N, and N, will differ if the electrons and holes have different effective
masses.

The use of N, and N, is limited to cases for which f and f,, can be approxi-
mated by the simple exponential functions of equations (2) and (3) of
Section 10.1. If the concentration of carriers is increased sufficiently, these
approximations are no longer valid and other formulae must be employed.
We shall illustrate this for the case of electrons.

(The reader may skip the next three paragraphs and Figure 10.5 on a
first reading.)

If the number of electrons in the conduction band is very large, say one
per atom as in the case of a monovalent metal like sodium or copper, then
the Fermi level will lie very far above the bottom of the conduction band.
For the case of sodium, which has been most extensively investigated, there
is experimental and theoretical evidence that the energy is given by
P2/2m up to the highest occupied levels so that the equation (9) of Sec-
tion 9.1 for N(&) may be used. Calculation then shows that the levels
must be occupied up to a maximum energy &, of about 3.16 electron volts
above the bottom of the conduction band. This energy is so much greater
than £T that the transition region of f is negligible in comparison, and the
value of & may be calculated simply by solving equation (10) of Section
9.1 for &p:

n= j; " N(6)dE = (8x/38%)2m(Er — B (15a)

&p — &, = & = K2 (3n/87)%/2m = 21.6 X 10714% electron volts  (15b)

where & = &, + 6,,, and m is taken as the free electron mass. Cases of
this sort, for which the temperature no longer has an appreciable effect, are
said to be degenerate and the distribution of electrons is called a degenerate
electron gas.

For any given temperature, the statistics of the electrons in the band
will vary from classical to degenerate as the number is increased. The
dividing line is conventionally described by the degeneracy concentration
Mgeg OF the degeneracy temperature Tgee. These two quantities are related
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3 34 112
= | = 24
Taee [w] Sk e

= 4.2 X 1071y, %, (16)

by the equation,

This equation is interpreted as follows: At absolute zero the electrons are ",
condensed into the states of lowest energy and require all the states up tay ¢
certain energy &, given by (15). The degeneracy temperature defined by
the equation satisfies the equation kT4, = G,. In other words, if Tis
high enough to raise electrons from the bottom of the band to levels higher
than &,, the degeneracy will be largely destroyed. Equation (16) serves
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Fic. 10-5—Exact Dependence of # Upon (b6 — &,) and T Compared to
Limiting Forms.

equally well to give the degeneracy temperature for a given concentration
or the concentration for a given temperature.

When 7 is comparable to 74, there is no simple approximate formula
for n in terms of T and &r — &, and the value must be obtained by an
exact integration' of N(&)f(E)d6. The result of the exact integration is
shown in Figure 10.5. On this plot the limiting forms (11) and (15) are

1 J. McDougall and E. C. Stoner, Roy. Soc., London Trans. 237A, 67-104 ( 1938); Miiller-

Pouillet, Lehrbuch der Physik 4 (4), pp. 271 f.; A. Sommerfeld, Zeits. fir Physik 47, 1-32
(1928); L. Nordheim, Annalen der Physik 9, 607-678 (1931).
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also shown. The point corresponding to 7 = 74, is given by &, = T
and thus corresponds to the value of # for & — &, = kT on the com-
pletely degenerate curve, this value of # being about 0.75N,. The exact
solution for # = 0.75N, corresponds to &r — &, slightly negative so that
even the states at the bottom of the band are less than half-filled and the
distribution is not very degenerate. The distribution will be quite de-
generate, however, for situations in which &y — &, 1s 2kT or more. This
corresponds to values of 7 about three times larger than the 7g¢¢ correspond-
ing to a given T, or conversely to temperatures of 3% = 0.48 as large as .
the Tyee corresponding to a given 7.

We shall have occasion in Chapter 11 to discuss degenerate cases. For
the purposes of illustrating the method of finding the equilibrium distribu-
tion in a semiconductor, however, it is simpler and equally instructive to
consider a non-degenerate case. Accordingly, we return to the expressions
for n, p, ng, and p, which give these quantities as simple functions of &p.
These are substituted in the equation (3) for electrical neutrality, which
then becomes an equation which may be solved for &r. As mentioned
previously, graphical procedures for obtaining the solution are shown in
Chapter 16. The description of the results obtained for a particular
example is as follows:

We consider a case for a germanium sample which, like the silicon
sample A of Figures 1.9 and 1.12, has Ny > N,. In particular we have
chosen Ny = 10'® cm™ and N, = 10"* cm™. The energy scale has been
chosen with zero midway between the energy bands and with E; = 0.36,
E; = 032, E, = —0.32, and E, = —0.36 electron volt. The dependence
of & upon T for this case is shown in Figure 10.6, the calculations being
described in Chapter 16. Qualitative descriptions of a number of the
features of Figure 10.6 are given below.

At very low temperatures we have

ng = Ng— N, a7

since there will be no holes and all the extra electrons are in bound states
on the donors. Hence, a fraction n4/Ny of the donor levels will be filled.
Consequently, & must be within a few times k7T of &a; for otherwise,
the states would be either all full or all empty in accordance with the
behavior of f at low temperatures shown in Figure 10.3(a). Since &p
is near &g, the number of electrons in the conduction band will vary as
exp [— (&, — 84)/kT] in accordance with equation (11). Thus, for this
case, the activation energy obtained from a log # vs 1/T plot will be the
binding energy &, — &4 of an electron in a donor state rather than half
this value. The temperature range over which this approximation is
valid extends only up to about 10°K as may be seen from the plot of &p
versus T given in Figure 10.6.

As the temperature is increased still further, an appreciable number of
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electrons are excited to the conduction band, and & tends to move down
so as to keep 7, constant, by reducing the number of electrons in the donor
levels. Over the temperature range for which there is substantially com-
plete ionization of the donor levels, the equation

n> Ny — N, (18)
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Fie. 10-6—The Fermi Level for Electrical Neutrality Plotted Against Temperature,
for Germanium with Ny = 10" cm™2 and N = 10 cm™ and &, — §; = 0.04 ev.

holds. This temperature range is referred to as the saturation range since
all available excess electrons are in the conduction band. The saturation
range is entered as soon as &p has fallen several times #7 below &  so that
the donor levels are substantially empty. On Figure 10.6, the value of kT
in electron volts is shown as a function of temperature; it is seen that at
about 100°K, &; — &r > 2kT so that for temperatures above this the
donors are fully ionized. In this range, increasing the temperature requires
a decrease in &p for the same reasons shown in Figure 10.3(b) and (c).
This decrease finally brings &7 to a position a few 2T above the midpoint
between the bands. As soon as this occurs, an appreciable number of holes
is produced. At still higher temperatures, & approaches the midposition
more closely, for otherwise either the holes or the electrons would greatly
outnumber the other, and the condition, equation (3), of electrical neu-
trality could not be satisfied. As a consequence of this stabilization of &p,
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both 7 and p increase exponentially as exp [~ (& — &r)/kT] and
exp [— (Er — &,)/kT]; since &p is midway between &, and &,, these
both reduce to exp [— (&. — &,)/2kT] so that, as mentioned in Chapter 1,
the activation is half the forbidden energy gap. The intrinsic range has
been selected for Figure 10.6 as the range for which #/p < e, that is, it is
the range for which & lies less than $kT above the midpoint of the energy
gap.

In the event that N, is greater than Ny, there is always a net excess of
holes. Because of the general symmetry between hole densities and
electron densities, as shown in equations (3) of Section 10.1 and (7) to (14)
of this section, an entirely similar behavior occurs, with &p starting at &,
at low temperatures and rising to (&; + &,)/2 at high temperatures.

The description in this section thus puts in somewhat more formal terms
the physical picture described in Chapter 1. In Chapter 16, additional
details are given showing more fully the trend for &7 and the way in which
the electron and hole densities vary.

This section may be summed up by saying that, once the distribution of
quantum states in energy is known and the temperature specified, a definite
procedure can be stated for finding the equilibrium distribution of electrons
and holes. This procedure requires the Fermi level, &, to be adjusted to
give electrical neutrality [equation (3) of Section 10.3]. Certain simplifica-
tions can be introduced in the procedure, such as the use of N, and N,, the
effective numbers of quantum states in the conduction band and valence-
bond band; the general trend of the behavior can be seen to be that dis-
cussed in Chapter 1 in connection with Figures 1.9 to 1.12. However,
there are few simplifying features, and only for the low temperature and
intrinsic ranges can a simple interpretation be given of the slopes of the
plots of the logarithm of 7 versus 1/T.

The fact that there is complete statistical symmetry between holes and
electrons, as shown by equation (4) of Section 10.1 and its consequences,
should be noted. This symmetry, together with the results of Chapters 7
and 8, shows that the only significant feature distinguishing the behavior
of holes from that of electrons in semiconductors is the sign of the effective
charge.?

An important consequence of the form of the approximations (11) and
(14) for 7 and p is that their product is a function of T only and is inde-
pendent of 7 and p individually:

np = NN, exp [(6; — &,)/kT] = NN, exp (—6&¢/kT)
= 2.33 X 103173 exp (—&g/kT) cm™®. (19)

For intrinsic material, # and p are equal to each other and each is equal to

2 The mathematical investigation of the equivalence takes major portions of Chapters 15
and 17,
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the square root of equation (19). We shall use this constancy in the next
section and shall discuss it further in Sections 12.4 and 16.4 and in connec-
tion with its use by Pearson and Bardeen in analyzing silicon alloys.
Equation (19) can also be derived on the basis of the statistical theory of
detailed balancing, which requires that the rate of recombination of holes
and electrons (proportional to #p) should equal their rate of generation,
which should depend on T as does the right side of equation (19) but not
on 7 ot p.

104 APPLICATION AT ROOM TEMPERATURE

Because of the practical interest in high resistivity germanium at room
temperature, we shall present a simplified analysis and describe the results.
In Section 16.3 the same problem is analyzed by the general methods of
Section 10.3 making use of illustrative values of 0.72 electron volt for
&, — &, and 0.04 electron volt for &, — &, and &, — &;. We shall use
here a somewhat more direct procedure which utilizes different experimental
data. If the intrinsic line for germanium is extrapolated to room tempera-
ture it yields a value of 48 ohm-cm for the resistivity.! On the other hand
the resistance of a relatively pure #-type sample may be 2.4 ohm-cm.
(Using 2600 cm?/volt sec for the mobility for electrons in germanium, this
gives a concentration 7 = or/erpr = 1/2.4 X 1.6 X 1071° X 2600 =
1.0 X 10 electrons/cm® in agreement with the example of Chapter 16.)
The ratio of mobilities for germanium is estimated? to be 4 = 1.5, From
this we can determine directly the ratio of 7’ (single prime for the 2.4-
ohm sample) to #’’ (double prime for the intrinsic sample) as follows: For
the intrinsic sample p’’ = »”/, almost by definition. Therefore, its con-
ductivity is

0" = e+ 2p) = emp(1 + D). 1)
For the 2.4-ohm sample, p’ is negligible (as we shall verify below) and

o' = eppn’ = epybn’. 2)

Dividing the second by the first gives

o 48 n’
==
o’ 24 (1 + 6)n’’ ©)
whence
! 142
% = (—j—) 20 = 33 = €5, @)

1 Since this section was written, better germanium specimens have become available and
a new estimate of 60 ohm-cm is considered best. The vaiues of p, and pp have also been re-
vised as a result of Haynes’ experiments. It has not been practical to revise all examples in
the text accordingly, and this section, together with Chapter 16, is now somewhat inaccurate.
They are internally consistent, however, and illustrate the principles involved.

2 See Section 12.9 for a review of the best available data.
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From equation (11) of Section 10.3, which states that
n = Nc CXP[—(éc - 6I")/kT]) (5)

we see at once that & must be 3.5kT higher for the 2.4-ohm-cm sample.
Since, for the intrinsic sample, & is midway between the bands, &z for
the 2.4-ohm sample must be 3.54T or 0.09 electron volt above the mid-
point. This situation is summarized in Figure 10.7 which also shows a
possible impurity distribution. The same situation (except for small dif-
ferences in rounding off numbers) is represented more analytically in

Chapter 16, Figure 16.2.
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Fic. 10-7—Theoretical Distributions of Quantum States in Energy, Effective Densi-
ties, and Densities of Electrons and Holes for Germanium. (The values shown are
illustrative and not exact.)

It should be noted that n'p’ = #"'»"" in Figure 10.7. ‘This is a direct
consequence of equation (19) of the last section.

A plot for 2.4-ohm-cm silicon would look much the same as Figure 10.7,
and the Fermi level would come at about the same distance (about 0.27
electron volt) from the conduction band. However, since the energy gap
for silicon is 1.12 volts, the Fermi level would lie 0.29 electron volt above
the midpoint, and the number of holes would be very small.

The changes from n-type to p-type are obvious.

At room temperature, diamond is an insulator. Its conductivity is,
therefore, 10723 ohm™ cm™ or less. The mobility of electrons and holes
is probably about one tenth as much for diamond as for germanium, hence
the density of carriers will be only about 10® cm™. Taking N, as 10'%,
this means that f = 1077 and, consequently, &p is not within 1 electror
volt of either the conduction or valence-bond band. This energy difference
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of 1 electron volt is larger than that predicted for the binding energy of
donor levels (0.35 electron volt) and suggests that there are levels of other
sorts lying at least 1 electron volt away from the edges of the energy gap.
Further evidence for such levels is furnished by data on the ultraviolet
absorption of diamond which varies from sample to sample from around
7 to 4 electron volts, indicating levels lying several volts from the edges of
the energy gap. Further evidence for such deep lying levels has been
obtained from studies of the release of trapped electrons and holes in
experiments on electron bombardment induced conductivity.?

Applications of the statistical methods discussed here to cases in which
the distribution of holes and electrons vary from one part of the semi-
conductor to another have been carried out in various connections. Some
of the basic equations required are discussed in Section 12.4. Some of the
applications of particular interest apply to metal semiconductor contacts
and are presented in the references quoted in Section 4.3. The distribu-
tion of potential and its dependence on temperature for a semiconductor
with surface states has been treated* and similar calculations have been
carried out in some detail for p-» junctions.® An excellent review of the
problem with emphasis on metal-semiconductor contacts is contained in
a paper by Slater.®

ProBLEMS

1. The equilibrium condition for temperatures below the intrinsic range
may be regarded as resulting from the “pseudo-chemical” reaction

excess electron + jonized donor & neutral donor.

The three concentrations involved are respectively n, N; — ngy, and #ng.
The mass action law would then give
n(Na — ng)
ng

K.

Derive this equation employing the approximation (10) of Section 10.3
and show that

K = N:exp[(&65 — &,)/kT].

(This result corresponds to equations (22) and (23) for G. L. Pearson and
J. Bardeen, Pkys. Rev., 865-883 (1949), except that our value of K is twice
theirs. The difference arises from the fact that an electron trapped on a
donor may have either plus or minus spin and, therefore, the correct expres-
sion for nq is Nf[(64 — #T1n2 — &p)/kT]; see Problem 2, Chapter 16.)
% K. G. McKay, Phys. Rev. 77, 816-825 (1950).
4].J. Markham and P. H. Miller, Phys. Rev. 75, 959-967 (1949).

8 W. Shockley, Bell Syst. Tech. ]. 28, 435-489 (1949), references.
8J. C. Slater, Phys. Rev. 76, 1592-1601 (1947), references.
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If the mass action law is combined with the condition for electrical
neutrality, show that
n(n + N,)
— % _K
(Nd - Na - 71)
and that
(n+ K)Y(n + N,) = N;K.

This quadratic may be solved for 7 so that #» may be plotted as a function
of T. This formula is used by Pearson and Bardeen to fit Figure 1.12;
they use Ny =12 X 10!, N, = 1.5 X 10, &, — &; = 0.045 electron
volt, m, = 0.33 free electron mass and the factor of (3), mentioned above,
in K. Calculate some values of # from this formula and compare with
Figure 1.12,

Refer to Chapter 16, equations (10) and (11) of Section 16.4, and com-
pute the values of p shown in Figure 1.12.

2. Obtain the formula for N, or N, by integrating f directly over P-space.
See Section 16.2 for a hint. What is the significance of the § power in
equation (12) of Section 10.3?

3. Two groups of quantum states Ny and N, in number at energies &,
and &; are occupied by #; and 73 electrons. Suppose electrons in N can
make transitions to any vacant state in Np with transition probability Ty,
per unit time. The rate of transitions from Ny to Ny is then

m T12(N2 — ny).
From general statistical theory, the transition probability Ty from 2
tolis
) T21 —_ Tl2e(62—51)/kT.
Show that if #; and #, are given by the Fermi-Dirac distribution, then the
rate of transition from 1 to 2 is just balanced by that from 2 to 1:
nT21 (N1 — m1).
Show that if a third group of quantum states, described by N, &3, and

n3,1s in equilibrium with &1, it must also be occupied in accordance with the
same Fermi-Dirac distribution.



CHAPTER 11

MATHEMATICAL THEORY OF CONDUCTIVITY
AND HALL EFFECT

11.1 INTRODUCTION

In this chapter, the basic formulae for mobility and Hall effect are
derived. The procedure is divided into two parts. In the first part it is
shown that any disturbance of the distribution of electrons from the equi-
librium value tends to decay, owing to the “scattering’ of electrons, and the
effect of this decay upon the current which may be present is evaluated.
In the second part, expressions are derived for the rate at which current
builds up due to the application of electric and magnetic fields. Since only
a linear theory is desired, the rate of build-up due to an electric field can be
calculated from the undistorted or equilibrium distribution, the effect of
the electric field upon the distorted part of distribution being quadratic in
the electric field. For the effect of a magnetic field, however, it is necessary
to consider disturbances produced by the electric field in order to get any
. effects. The steady-state solution is then found by equating the rate of
build-up of current to the rate of decay. The problem is more complicated
than that of Chapter 8 because the rate of decay is not the same for all
classes of electrons, and suitable averaging processes must be carried out.

In Sections 11.2 and 11.3 the decay process is considered. Section 11.2
is concerned with a general formulation of the decay process and with the
derivation of formulae useful for application to specific cases. In this
treatment it is shown that the rate of decay is not affected by the fact that
the Pauli exclusion principle prevents electrons from making transitions to
already occupied states. In this section, reference is made to parts of
Chapter 17 in which the quantum-mechanical theory of transition prob-
abilities is given in detail.

In Section 11.3 we treat the two most important transition-producing
mechanisms: scattering by charged ions, similar to the Rutherford scatter-
ing of a-particles by atoms which first gave evidence of the nuclear struc-
ture of atoms, and scattering by thermal vibrations of the atoms. The
first mechanism is treated on the customary basis of an approximate model.
The thermal scattering, which is treated in detail in Chapter 17, is given a
brief and simplified treatment in Section 11.3 which serves to illustrate the
principles involved.

250
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In Section 11.4, we treat the effect of the combined interaction of the
applied fields and the decay process. The effect of an electric field upon
the equilibrium distribution is evaluated and combined with the laws of
decay derived in Sections 11.2 and 11.3, and the steady-state distribution
is determined. The effect of a magnetic field upon the steady state due to
the electric field is next considered, and a modified steady-state distribu-
tion is determined. From these steady-state distributions, general expres-
sions for mobility, conductivity, and Hall effect are found. These general
expressions are worked out in detail for a number of cases of particular
importance in semiconductors.

The formulae for intrinsic semiconductors, in which holes and electrons
carry comparable portions of the current, are given in Chapter 8 in terms
of the mobilities of holes and electrons. These formulae are repeated in
the notation of this chapter in Section 11.4.

In Section 11.5 a comparison between theory and experiment is presented.

11.2 THE RELAXATION TIME

In Chapter 8 we gave a simplified treatment of the scattering process
based on two assumptions:

(1) The probability that an electron (or hole) makes a transition in any
small interval df of time d¢/7 where T is a constant.

(2) The probability of a transition to any particular end state is inde-
pendent of the initial state and is directly proportional to the probability
that the end state would normally be occupied in the thermal-equilibrium
distribution.

In Chapter 17, an analytical examination of these assumptions is carried
out on the basis of Schroedinger’s equation. It is found that, for cubic
semiconductors such as silicon and germanium and the customary assump-
tion of spherical energy surfaces, the probability of transition depends
neither on the direction of motion nor the time after the last transition
but, in general, does depend on the speed of motion. Thus 7 in assump-
tion (1) must be replaced by 7(v) where v = |v| is the speed, or by (&)
where & is the energy.

It is also found that assumption (2) is in error and that the electron can
gain or lose only a small fraction of its energy in a given collision. These
gains and losses are important in converting to heat the electrical power
delivered to the electrons in the form of I2R or ¥2/R. However, these
effects are quadratic in the field and can be disregarded in developing the
linear theory of mobility and Hall effect. The reason that the change in
energy is small is discussed in detail in Section 17.6 in connection with
equation (31). In brief, the electron can gain or-lose in one transition an
amount of energy Av where v is the frequency of the atomic vibration with
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which it interacts. Such a quantum of energy is called a phonon. The
vibrations with which the electron interacts are those with wave lengths
comparable to the electron’s wave length. This condition leads to the
relationship

my = h/\ for the electron, ¢))

¢/A or kv = ck/\ = moc for the phonon, (2)

14

where ¢ is the speed of sound in the crystal. The ratio of phonon energy
to electron energy is thus

—77;:]:7”/_2 = 2/v = (108 cm/sec)/(107 cm/sec) = 107! 3)
for typical values at room temperature. Thus in one collision the electron
may change its energy by about 10 per cent. This change is relatively
small; furthermore, there will be balancing effects, and electrons falling to
lower energies will be replaced by other electrons excited to higher energies.
For these reasons negligible errors will be introduced by making the cus-
tomary approximation of conductivity theory that energy is conserved in
the transitions. This result is in disagreement with assumption (2) which
supposes that the energy after transition is independent of the energy
before transition.

Assumption (2) also fails in regard to the distribution of directions after
collision. As we shall show in Section 11.3a, for scattering by ionized
donors and acceptors there may be a high degree of correlation between the
direction of motion before and after collision. We shall derive in this sec-
tion a general formula which takes into account such correlations and will
apply it to impurity scattering in later sections.

Figure 11.1 represents the case with which we shall be chiefly concerned.
It represents in momentum space two equal energy surfaces separated by a
small energy difference 6. An element of volume in the shell between the
two surfaces may be described by the corresponding surface area 82, which
has the dimensions of P2 or (momentum)2, (We shall use the symbol
8 for these infinitesimal areas in this section so as to reserve 4 for changes
occurring during a time interval 4£.) An electron in a state P; may make
transitions to other states of almost exactly equal energy. As a result of
these transitions, the electrons (more exactly, the states occupied by
electrons) become uniformly distributed in the shell so that the probability
that any given state be occupied by an electron becomes the same for all
states and acquires the value f given by the Fermi-Dirac distribution func-
tion of Chapter 10, evaluated for the energy of the shell considered.

The number of states in the range §&3Q; is obtained as follows: The
volume in momentum space of the element is 42 times the shell thickness,
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6P,. Evidently,
86 = |Vp&E(P)| 6P, = 08P, 4)

the last equality following from the group-velocity formula. Hence the
volume of the element is 8P,8Q; = 6&66Q;/v;. The density of states in
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Fic. 11-1—Notation Used for Describing Transitions from States in Range 889; to
States in Range 660%;. 'The Change in Direction, 6, Is Useful for Spherical Energy
Surfaces.

P-space is 27/1® where ¥ is the volume of the crystal, as for equation (12)
of Section 5.5. Hence the number of states 8s; in the element is

05y = (2V/h3)5559i/0i = 2p;6686Q; (5)

where
pi = V/h; (6)

is the density of states of each spin per unit energy per unit surface area.

For the case in which the band is nearly empty, so that the effect of the
Pauli exclusion principle may be neglected, the transitions may be described
in terms of a probability parameter /#;;. This parameter is used to specify
the total probability of transition from a state 7 to all of the states ; lying
in a region dQ; of the energy shell. In these transitions there may be
energy losses or gains. For reasons discussed above we neglect these
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changes in energy and assume that all the states to which state P; can
make transitions lie in the shell 66 so that we may speak of transition
probability per unit area of the shell. Accordingly the probability that an
electron makes a transition from a state near P; to a state in range 69;
near P;in time df is

W,5Q;dr. (7)

The total number of transitions of this sort is obtained simply by mul-
tiplying this probability by the number of electrons in the element 49
and this number is simply 4s; times the probability f; that these states are
occupied. Hence the total rate of transition from d&d4Q; to d6d<; is

(6669, — 8609;) = {85,V :;6Q; (8)
= £.20,7,;668Q,6Q;. )]

Similarly the transitions from j to 7 will be given by
(668Q; — 866%Q;) = £;2p,;:6662:59;. (10)

These expressions are found to be consistent with the principle of de-
tailed balancing' which states that each process and its reverse occur with
equal frequency under equilibrium conditions. For thermal equilibrium
f; = f; = £(6), the Fermi-Dirac distribution function for the energy & of
the shell. Furthermore, as discussed in Section 17.2, the quantum-
mechanical formulae for #;; and #j; are such that

Wi = piW s (11)

hence the two rates previously evaluated are equal. We shall make use of
this result later in this section in order to determine the effect of the Pauli
principle upon the relaxation process when a large fraction of the states are
occupied.

The total probability of transition from the state P; is simply the sum of
all the transition probabilities to all areas 4Q;, We shall write it as #;
where

Ww; =f Wﬁdﬂj = l/Tc. (12)
(g)

This probability is essentially the reciprocal of the mean free time between
collisions, denoted by 7. since, by the arguments of Chapter 8, the probabil-
ity of collision should be 4¢/7, and this is evidently equal to #.ds. Since
assumption (2) is invalid, however, T, cannot be related to the rate of
decay of a current, and a new formula must be derived for the relaxation
time.

We shall next consider the law of decay for any current produced by a

1P, W. Bridgman, Phys. Rev., 31, 101 (1928).
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disturbance of the equilibrium distribution. We shall deal first with the
case of principal interest, in which the energy surfaces are taken as spheres
and all directions of motion as equivalent. We shall later mention briefly
another case in which 7, depends on direction. For the spherical case, it
is evident from symmetry that for the equilibrium condition there is no
net current. We shall next suppose that we are dealing with a perturbed
situation. Let us then consider the current due to the group of electrons
én; in an element of volume 464Q;. These will produce a current density

5l = (—ev;/V)om,. (13)

In time 4, a fraction #;;dQ;dt will be scattered into a new direction with
velocity v; so that the change in current will be

dél = dt » )[——e(v,- - v,)/V]BniW,-de,- (14)
(3

where ©(&) is the energy surface. For the cases of particular interest,
the transitions are of such a nature that #;; is a function #7(8) only of 6,
the angle between initial and final velocities. Under these conditions, we
may choose a set of spherical coordinates with 8 = 0 parallel to v;. In
terms of this coordinate system, we may write

v, = (15a)
v; = (i, cos 0 + i, sin 0 cos ¢ + i, sin @ sin p)v; (15b)
dQ; = (mu;)? sin 0 dode (15¢)

where i, iy, i, are mutually orthogonal unit vectors. With the aid of these
we find

oI = dton;(—e/ V)i v; j; ) (cos 8 — D)W () (mnv;)? sin 6402x  (16)

since the components along i, and i, integrate to zero. This expression
may be rewritten as

&l = —anl f (1 — cos 0,7 (6,)d%,;

= ~dtsIWo(1 — cos ) = —dsl /v (17)
where
Wy = f W(0)de; = 1/7, (18)
and
(1 = cos6) = (1/77) f (1 — cos ) (8)dS. (19)

These equations lead, as we shall shortly show, to the result that the current
8 decays with a “relaxation time” equal to T = 7./{1 — cos 6) where
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(1 — cos 8) is the average value of 1 — cos 6 for all the collisions. It may
be helpful to note that, if collisions were equally likely to all areas of the
sphere, then (cos 6) would be zero so that T, and T would be equal. On the
other hand, if all transitions involved only small changes in direction,
{cos 6) would be close to unity and relaxation time + would be much larger
than ..

In order to relate these equations to the relaxation of the current, we
shall consider the current due to an arbitrary distribution f; over the energy
shell, supposing still that f; < 1. FEach element of area 6Q; will then
produce a current 8I;, and in time d¢ the electrons in these elements will
suffer transitions such that

asl; = —oldt/x. (20)

The change in the total current I = 3 6I; will then change by
dal = Y. I; = — (Z8l)dt/v = —1dt/, (21)
or
= —-I/7. (22)

This shows that the total current decays according to a simple relaxation
equation for which the solution is

I = L, (23)

Thus 7 is the relaxation time for the decay of the current and is, as we shall
see, the correct quantity to use in calculating the mobility. We shall refer
to it as the relaxation time or the mean free time.

For the case of thermal vibrations, the transition probability is inde-
pendent of  and (cos 6) = 0 so that T = 7.. For impurity scattering,
{cos 6) approaches unity for large energies so that T>> 1.; for this case T,
enters the theory only as an intermediate step.

Another model, which we mrention for completeness, has been consid-
ered by various writers. For this model, T, is a function of P; and
{cos 6) = 0, for spherical energy surfaces. For more complicated sur-
faces, it is supposed that scattering is of such a nature that after one col-
lision an electron is equally likely to be scattered into any state in the
energy shell. The rate of decay of current in this case is given by the
formula

= -%Tol/x, (24)

summed over all the elements of the energy shell, where 7;is the 7, appro-
priate to the state near P;.

The Effect of the Pauli Exclusion Principle. If a large fraction of the
states in the energy shell are occupied, some electron transitions will be
prevented because the end states will already be occupied. This preven-
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tion may be taken account of very simply, and the surprising result is
obtained that the relaxation process is not affected by having an appreciable
proportion of the states occupied.

The simplest way of seeing this result is as follows: If a transition from
a state P; to a state P; is prevented b